1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
## Copyright (C) 1996, 1997, 2000, 2002, 2004, 2005, 2006, 2007
## Auburn University. All rights reserved.
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} lyap (@var{a}, @var{b}, @var{c})
## @deftypefnx {Function File} {} lyap (@var{a}, @var{b})
## Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart
## algorithm (Communications of the @acronym{ACM}, 1972).
##
## If @var{a}, @var{b}, and @var{c} are specified, then @code{lyap} returns
## the solution of the Sylvester equation
## @iftex
## @tex
## $$ A X + X B + C = 0 $$
## @end tex
## @end iftex
## @ifinfo
## @example
## a x + x b + c = 0
## @end example
## @end ifinfo
## If only @code{(a, b)} are specified, then @command{lyap} returns the
## solution of the Lyapunov equation
## @iftex
## @tex
## $$ A^T X + X A + B = 0 $$
## @end tex
## @end iftex
## @ifinfo
## @example
## a' x + x a + b = 0
## @end example
## @end ifinfo
## If @var{b} is not square, then @code{lyap} returns the solution of either
## @iftex
## @tex
## $$ A^T X + X A + B^T B = 0 $$
## @end tex
## @end iftex
## @ifinfo
## @example
## a' x + x a + b' b = 0
## @end example
## @end ifinfo
## @noindent
## or
## @iftex
## @tex
## $$ A X + X A^T + B B^T = 0 $$
## @end tex
## @end iftex
## @ifinfo
## @example
## a x + x a' + b b' = 0
## @end example
## @end ifinfo
## @noindent
## whichever is appropriate.
##
## Solves by using the Bartels-Stewart algorithm (1972).
## @end deftypefn
## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Created: August 1993
## Adapted-By: jwe
function x = lyap (a, b, c)
if (nargin != 3 && nargin != 2)
print_usage ();
endif
if ((n = issquare(a)) == 0)
error ("lyap: a is not square");
endif
if (nargin == 2)
## Transform Lyapunov equation to Sylvester equation form.
if ((m = issquare (b)) == 0)
if ((m = rows (b)) == n)
## solve a x + x a' + b b' = 0
b = b * b';
a = a';
else
## Try to solve a'x + x a + b' b = 0.
m = columns (b);
b = b' * b;
endif
if (m != n)
error ("lyap: a, b not conformably dimensioned");
endif
endif
## Set up Sylvester equation.
c = b;
b = a;
a = b';
else
## Check dimensions.
if ((m = issquare (b)) == 0)
error ("lyap: b must be square in a sylvester equation");
endif
[n1, m1] = size(c);
if (n != n1 || m != m1)
error("lyap: a,b,c not conformably dimensioned");
endif
endif
## Call octave built-in function.
x = syl (a, b, c);
endfunction
|