1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
## Copyright (C) 1996, 1998, 2000, 2004, 2005, 2007
## Auburn University. All rights reserved.
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} sysrepdemo
## Tutorial for the use of the system data structure functions.
## @end deftypefn
## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Created: June 1995
## Revised Aug 1995 for system data structure format
function sysrepdemo ()
save_val = page_screen_output ();
page_screen_output (1);
disp("System representation demo:")
num = [5, -1];
denom = [1, -2, 6];
a = b = c = [];
syschoice = -1;
ch_init = 2;
ch_extract = ch_init+1;
ch_update = ch_extract+1;
ch_view = ch_update+1;
ch_details = ch_view+1;
ch_quit = ch_details+1;
while(syschoice != ch_quit)
disp(" ")
syschoice = menu("Octave System Representation Menu", ...
"General overview of system representation (DO THIS FIRST)", ...
"Initialize a system (ss, tf, zp)", ...
"Extract data from a system(sys2ss, sys2tf, sys2zp, etc.)", ...
"Update internal representation (sysupdate)", ...
"View the internal contents of a system (sysout)", ...
"Details of internal representation", ...
"Return to main menu");
if(syschoice == 1) # general overview
disp("The Octave Control Systems Toolbox (OCST) was designed to")
disp("provide a simple user interface to a powerful set of tools.")
disp(" ")
disp(" ----------")
disp(" input(s) ---->| System | ---> output(s) ")
disp(" ----------")
disp(" ")
disp("Like other computer-aided control system design tools, the OCST")
disp("enables users to enter their descriptions of dynamic systems in ")
disp("their preferred form (state space, transfer function, or ");
disp("zero-pole format). ");
disp("The OCST stores system descriptions in a single variable data ");
disp("structure that allows for continuous time, discrete-time, or mixed ");
disp("(sampled-data) systems. ");
disp(" ");
disp("This single variable description of dynamic systems greatly simplifies ");
disp("both the code of the OCST as well as the user interface, since only")
disp("one variable is passed per system, regardless of the internal ")
disp("representation used in the data structure. As a result, the ");
disp("likelihood of user error is greatly reduced when calling OCST")
disp("functions. Further, all OCST functions have been written to")
disp("provide meaningful warning or error message to assist the user")
disp("in correcting their programming errors while using the OCST.")
disp("The details of the internal representation can be seen in ");
disp(["menu option ",num2str(ch_details)]);
disp("The data structure used in the OCST is called a \"system data structure.\"");
disp("A system data structure is contstructed with one of:")
disp(" fir (FIR transfer function to system)")
disp(" ss (state space matrices to system)")
disp(" tf (SISO transfer function to system)")
disp(" zp (SISO zero/pole/leading coefficient to system)")
disp(" ")
disp(["These functions are discussed in in menu option ",num2str(ch_init)])
disp("The data in a system may be extracted using ")
disp(" sys2fir (FIR transfer function from system")
disp(" sys2ss (state space matrices from system)")
disp(" sys2tf (SISO transfer function from system)")
disp(" sys2zp (SISO zero/pole/leading coefficient from system)")
disp(" ")
disp(["These functions are discussed in menu option ", ...
num2str(ch_extract)]);
disp("Other options discussed under this menu are updating the internal")
disp("representation form of a system data structure with sysupdate and printing")
disp("the description of a dynamic system to the screen with sysout.")
disp(" ")
disp("Once the user is familiar with these commands, the rest of the ")
disp("OCST package will be quite easy to use.")
elseif(syschoice == ch_init) % Initialize
disp("Initialization of a system:");
disp(" ");
formopt = 0;
while(formopt != 4)
disp("Three data formats may be used to initialize a system:")
formopt = menu("System data structure initialization menu", ...
"State space form (ss)", ...
"Transfer function form (tf)", ...
"zero-pole form (zp)", ...
"Return to System representation menu");
if(formopt == 1)
disp("State space representation of a system is based on the usual")
disp("multi-variable differential equations")
disp(" ")
disp(" . ")
disp(" x = A x + B u -or - x(k+1) = A x(k) + B u(k) ")
disp(" y = C x + D u y(k) = C x(k) + D u(k) ")
disp(" ")
disp("for matrices A, B, C, D of appropriate dimension.")
disp(" ")
ssopt = 0;
ssquit = 5;
while(ssopt < ssquit)
ssopt = menu("State space initialization examples", ...
"Double integrator example", ...
"Double delay (discrete-time) example", ...
"Summing junction (D-matrix only) example", ...
"ss details (help ss)", ...
"return to system initialization menu", ...
"return to system representation main menu");
if(ssopt == 1)
disp("Example: construct a system representation of a")
disp("double integrator via state-space form")
cmd = "a = [0, 1; 0, 0];";
run_cmd
cmd = "b = [0; 1];";
run_cmd
cmd = "c = [1, 0];";
run_cmd
cmd = "sys = ss(a,b,c);";
run_cmd
disp("The state space form of the system is seen via sysout:")
cmd = "sysout(sys)";
run_cmd
disp("Notice that the Octave controls toolbox automatically")
disp("assigns names to the states, inputs and outputs,")
disp("and that the D matrix was filled in automatically.")
disp("We verify that it's a double integrator via sysout:")
cmd = "sysout(sys,""tf"")";
run_cmd
prompt
elseif(ssopt == 2)
disp("Example: discrete-time double-delay:")
disp("This example is identical to the double-integrator,")
disp("except that it is a discrete-time system, and so has")
disp("a sampling interval. We arbitrarily select T=1e-3.");
cmd = "a = [0, 1; 0, 0];";
run_cmd
cmd = "b = [0; 1];";
run_cmd
cmd = "c = [1, 0];";
run_cmd
cmd = "sys=ss(a,b,c,[],1e-3);";
run_cmd
cmd = "sysout(sys)";
run_cmd
disp("Notice that the D matrix was filled in automatically.")
disp("This is done if D is input as the empty matrix.")
disp(" ")
disp("Notice also that the output y_1 is labelled as a discrete")
disp("output. The OCST data structure keeps track of states")
disp("and output signals that are produced by the discrete-time")
disp("portion of a system. Discrete states and outputs are ")
disp("implemented as shown in the block diagram below:")
disp(" ")
disp(" ")
disp(" _________ ________ x(kT) ________________")
disp("f(t)-->|sampler|-->| delay |----->|zero order hold| -->")
disp(" --------- -------- ----------------")
disp(" ")
disp(" ___________ _______________")
disp("f(t)-->| sampler |-->|zero-order hold| --> y(discrete)")
disp(" ----------- ---------------")
disp(" ")
disp("where f(t) is an input signal to either the output or the")
disp(" discrete state.")
disp(" ")
disp("The OCST does not implement samplers on inputs to continuous")
disp("time states (i.e., there are no samplers implicit in the B")
disp("or D matrices unless there are corresponding discrete")
disp("outputs or states. The OCST provides warning messages when")
disp("if this convention is violated.")
prompt
elseif(ssopt == 3)
disp("A summing junction that computes e(t) = r(t) - y(t) may be");
disp("constructed as follows:");
disp("First, we set the matrix D:")
cmd = "D = [1, -1];";
run_cmd
disp("ss allows the initialization of signal and state names")
disp("(see option 4), so we initialize these as follows:")
cmd = "inname = {\"r(t)\",\"y(t)\"};";
run_cmd;
cmd = "outname = \"e(t)\";";
run_cmd
disp("Since the system is continuous time and without states,")
disp("the ss inputs tsam, n, and nz are all zero:")
cmd = "sys = ss([],[],[],D,0,0,0,[],inname,outname);";
run_cmd
disp("The resulting system is:")
cmd = "sysout(sys)";
run_cmd
disp("A discrete-time summing block can be implemented by setting")
disp("the sampling time positive:")
cmd = "sys = ss([],[],[],D,1e-3,0,0,[],inname,outname);";
run_cmd
disp("The resulting system is:")
cmd = "sysout(sys)";
run_cmd
prompt
elseif(ssopt == 4)
help ss
disp(" ")
disp(" ")
disp("Notice that state-space form allows a single system to have")
disp("both continuous and discrete-time states and to have both continuous")
disp("and discrete-time outputs. Since it's fairly easy to make an")
disp("error when mixing systems of this form, the Octave controls")
disp("toolbox attempts to print warning messages whenever something")
disp("questionable occurs.")
elseif(ssopt == 6)
formopt = 4; # return to main menu
endif
endwhile
elseif(formopt == 2)
tfopt = 0;
while(tfopt < 5)
tfopt = menu("Transfer function initialization menu", ...
"Continuous time initialization" , ...
"Discrete time initialization" , ...
"User specified signal names" , ...
"tf details (help tf)", ...
"Return to system initialization menu", ...
"Return to system representation main menu");
if(tfopt == 1) # continuous time
disp("A transfer function is represented by vectors of the")
disp("coefficients of the numerator and denominator polynomials");
disp(" ")
disp("For example: the transfer function");
disp(" ");
num = [5, -1];
denom = [1, -2, 6];
tfout(num,denom);
disp(" ")
disp("is generated by the following commands:")
cmd = "num = [5, -1]";
run_cmd
cmd = "denom = [1, -2, 6]";
run_cmd
cmd = "sys = tf(num,denom);";
run_cmd
disp("alternatively, the system can be generated in a single command:");
cmd = "sys = tf([5, -1], [1, -2, 6]);";
run_cmd
disp("Notice the output of sys: it is an Octave data structure.")
disp("The details of its member variables are explained under")
disp("System Representation Menu option 5 (the details of system form)")
disp(" ");
disp("The data structure can be observed with the sysout command:")
cmd = "sysout(sys)";
run_cmd
disp("Notice that Octave assigns names to inputs and outputs.")
disp("The user may manually select input and output names; see option 3");
prompt
elseif(tfopt == 2) # discrete time
disp("A transfer function is represented by vectors of the")
disp("coefficients of the numerator and denominator polynomials");
disp("Discrete-time transfer functions require ")
disp("the additional parameter of a sampling period:")
cmd = "sys=tf([5, -1], [1, 2, -6], 1e-3);";
run_cmd
cmd = "sysout(sys)";
run_cmd
disp("The OCST recognizes discrete-time transfer functions and")
disp("accordingly prints them with the frequency domain variable z.");
disp("Notice that Octave assigns names to inputs and outputs.")
disp("The user may set input and output names; see option 3");
elseif(tfopt == 3) # user specified names
disp("The OCST requires all signals to have names. The OCST assigned default");
disp("names to the signals in the other examples. We may initialize a transfer");
disp("function with user-specified names as follows: Consider a simple ")
disp("double-integrator model of aircraft roll dynamics with ")
disp("input \"aileron angle\" and output \"theta\". A ")
disp("system for this model is generated by the command")
cmd = "aircraft=tf(1, [1, 0, 0], 0,\"aileron angle\",\"theta\");"; run_cmd
disp("The sampling time parameter 0 indicates that the system")
disp("is continuous time. A positive sampling time indicates a")
disp("discrete-time system (or sampled data system).")
cmd = "sysout(aircraft)";
run_cmd
disp("Notice that the user-selected signal names are listed.")
disp("These signal names are used in OCST plots and design functions.");
disp("(Run the frequency response demo to see an example of the use of ");
disp("signal names in plots.)")
prompt
elseif(tfopt == 4) # help
help tf
prompt
elseif(tfopt == 6) # return to main menu
formopt = 4;
endif
endwhile
elseif (formopt == 3)
zpopt = 0;
while(zpopt < 5)
zpopt = menu("Zero-pole initialization menu", ...
"Continuous time initialization" , ...
"Discrete time initialization" , ...
"User specified signal names" , ...
"zp details (help zp)", ...
"Return to system initialization menu", ...
"Return to system representation main menu");
if(zpopt == 1) # continuous time
disp("A zero-pole form representation of a system includes vectors")
disp("of the system poles and zeros and a scalar leading coefficient.");
disp(" ")
disp("For example: the transfer function");
disp(" ");
k = 5;
num = [5, -1];
denom = [1, -2, 6];
zpout(num,denom,k);
disp(" ")
disp("is generated by the following commands:")
cmd = "num = [5, -1]";
run_cmd
cmd = "denom = [1, -2, 6]";
run_cmd
cmd = "k = 5";
run_cmd
cmd = "sys = zp(num,denom,k);";
run_cmd
disp("alternatively, the system can be generated in a single command:");
cmd = "sys = zp([5, -1],[1, -2, 6],5);";
run_cmd
disp("Notice the output of sys: it is an Octave data structure.")
disp("The details of its member variables are explained under")
disp("System Representation Menu option 5 (the details of system form)")
disp(" ");
disp("The data structure can be observed with the sysout command:")
cmd = "sysout(sys)";
run_cmd
disp("Notice that Octave assigns names to inputs and outputs.")
disp("The user may manually select input and output names; see option 3");
prompt
elseif(zpopt == 2) # discrete time
disp("A zero-pole form representation of a system includes vectors")
disp("of the system poles and zeros and a scalar leading coefficient.");
disp(" ")
disp("Discrete-time systems require the additional parameter of a sampling period:")
cmd = "sys=zp([5, -1],[1, 2, -6],5,1e-3);";
run_cmd
cmd = "sysout(sys)";
run_cmd
disp("The OCST recognizes discrete-time transfer functions and")
disp("accordingly prints them with the frequency domain variable z.");
disp("Notice that Octave assigns names to inputs and outputs.")
disp("The user may set input and output names; see option 3");
elseif(zpopt == 3) # user specified names
disp("The OCST requires all signals to have names. The OCST assigned default");
disp("names to the signals in the other examples. We may initialize a transfer");
disp("function with user-specified names as follows: Consider a simple ")
disp("double-integrator model of aircraft roll dynamics with ")
disp("input \"aileron angle\" and output \"theta\". A ")
disp("system for this model is generated by the command")
cmd = "aircraft=zp([],[0, 0],1,0,\"aileron angle\",\"theta\");"; run_cmd
disp("The sampling time parameter 0 indicates that the system")
disp("is continuous time. A positive sampling time indicates a")
disp("discrete-time system (or sampled data system).")
cmd = "sysout(aircraft)";
run_cmd
disp("Notice that the user-selected signal names are listed.")
disp("These signal names are used in OCST plots and design functions.");
disp("(Run the frequency response demo to see an example of the use of ");
disp("signal names in plots.)")
prompt
elseif(zpopt == 4) # help
help zp
prompt
elseif(zpopt == 6) # return to main menu
formopt = 4;
endif
endwhile
endif
endwhile
elseif(syschoice == ch_extract) # extract system information
disp("Extract information from a system data structure in a selected format:")
disp("The actions of operations ss, tf, and zp are reversed by")
disp("respective functions sys2ss, sys2tf, and sys2zp. The latter two");
disp("functions are applicable only to SISO systems.")
formopt = 0;
while(formopt != 8)
formopt = menu("Extract system information", ...
"in state space form (sys2ss)", ...
"in transfer function form (sys2tf)", ...
"in zero pole form (sys2zp)", ...
"signal names (sysgetsignals,syssetsignals)", ...
"sampling time (sysgettsam)", ...
"signal dimensions (sysdimensions)", ...
"primary system type (sysgettype)", ...
"Return to system representation menu");
if(formopt == 1)
help sys2ss
elseif(formopt == 2)
help sys2tf
elseif(formopt == 3)
help sys2zp
elseif(formopt == 4)
help sysgetsignals
cmd="sys=ss(rand(4),rand(4,2),rand(3,4));";
run_cmd
printf("Example: All signals names can be extracted by\n");
cmd = "[Ast,Ain,Aout,Ayd] = sysgetsignals(sys)";
run_cmd
printf("Example: Input signal names can be extracted as\n");
cmd = "Ain = sysgetsignals(sys,\"in\")";
run_cmd
printf("Example: The name of output signal 2 can be extracted as\n");
cmd = "Aout = sysgetsignals(sys,\"out\",2)";
run_cmd
printf("\nNotice that Aout is returned as a cell array; the signal name\n");
printf("itself is obtained by specifying the input parameter strflg\n");
cmd = "Aout = sysgetsignals(sys,\"out\",2,1)";
run_cmd
prompt
cmd = "help syssetsignals";
run_cmd
printf("Example: set input 2 name to \"motor voltage\"\n");
cmd = "sys = syssetsignals(sys,\"in\",\"motor voltage\",2); sysout(sys)";
run_cmd
printf("Other syssetsignals demos are in the Block diagram demo program bddemo\n");
elseif(formopt == 5)
help sysgettsam
elseif(formopt == 6)
help sysdimensions
elseif(formopt == 7)
help sysgettype
endif
prompt
endwhile
elseif(syschoice== ch_update)
disp("The OCST system data structure format will store a system in the same format")
disp("as that with which it was initialized. For example, consider the following:")
cmd = "sys=zp([1, 2],[3, 4, 5],6)";
run_cmd
disp(" ")
disp("Notice the internal variables in the structure include zer, pol, and k,")
disp("the required variables for zero-pole form. We can update the system")
disp("to include state-space form as follows:")
cmd = "sys = sysupdate(sys,\"ss\")";
run_cmd
disp(" ")
disp("Now the sys data structure includes variables a, b, c, and d, as well")
disp("the default state names stname. sysupdate is usually used internally in")
disp("the OCST, but can be used manually if desired. A full description of")
disp("sysupdate is as follows:")
help sysupdate
prompt
elseif(syschoice == ch_view)
disp("The sysout command can be used to view a system in any desired format.")
disp("For example, consider the system created as follows:")
cmd = "aircraft=zp(1,[0, 0],1,0,\"aileron angle\",\"theta\");"; run_cmd
disp("The system may be viewed in its default format (zero-pole) as follows")
cmd = "sysout(aircraft)";
run_cmd
disp(" ")
disp("The system may be viewed in state-space or transfer function form as well:")
cmd = "sysout(aircraft,\"ss\")";
run_cmd
cmd = "sysout(aircraft,\"tf\")";
run_cmd
disp("A complete description of sysout is below:")
help sysout
prompt
elseif(syschoice == ch_details)
packedform
endif
endwhile
page_screen_output (save_val);
endfunction
|