1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
## Copyright (C) 1996, 1998, 2000, 2002, 2004, 2005, 2007
## Auburn University. All rights reserved.
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}] =} tf2ss (@var{num}, @var{den})
## Conversion from transfer function to state-space.
## The state space system:
## @iftex
## @tex
## $$ \dot x = Ax + Bu $$
## $$ y = Cx + Du $$
## @end tex
## @end iftex
## @ifinfo
## @example
## .
## x = Ax + Bu
## y = Cx + Du
## @end example
## @end ifinfo
## is obtained from a transfer function:
## @iftex
## @tex
## $$ G(s) = { { \rm num }(s) \over { \rm den }(s) } $$
## @end tex
## @end iftex
## @ifinfo
## @example
## num(s)
## G(s)=-------
## den(s)
## @end example
## @end ifinfo
##
## The vector @var{den} must contain only one row, whereas the vector
## @var{num} may contain as many rows as there are outputs @var{y} of
## the system. The state space system matrices obtained from this function
## will be in controllable canonical form as described in @cite{Modern Control
## Theory}, (Brogan, 1991).
## @end deftypefn
## Author: R. Bruce Tenison <btenison@eng.auburn.edu>
## Created: June 22, 1994
## mod A S Hodel July, Aug 1995
function [a, b, c, d] = tf2ss (num, den)
if (nargin != 2)
print_usage ();
elseif (isempty (num))
error ("tf2ss: empty numerator");
elseif (isempty (den))
error ("tf2ss: empy denominator");
elseif (! isvector (num))
error ("num(%dx%d) must be a vector", rows (num), columns (num));
elseif (! isvector (den))
error ("den(%dx%d) must be a vector", rows (den), columns (den));
endif
## strip leading zeros from num, den
nz = find (num != 0);
if (isempty (nz))
num = 0;
else
num = num(nz(1):length(num));
endif
nz = find (den != 0);
if (isempty (nz))
error ("denominator is 0.");
else
den = den(nz(1):length(den));
endif
## force num, den to be row vectors
num = vec (num)';
den = vec (den)';
nn = length (num);
nd = length (den);
if (nn > nd)
error ("deg(num)=%d > deg(den)= %d", nn, nd);
endif
## Check sizes
if (nd == 1)
a = b = c = [];
d = num(:,1) / den(1);
else
## Pad num so that length(num) = length(den)
if (nd-nn > 0)
num = [zeros(1,nd-nn), num];
endif
## Normalize the numerator and denominator vector w.r.t. the leading
## coefficient
d1 = den(1);
num = num / d1;
den = den(2:nd)/d1;
sw = nd-1:-1:1;
## Form the A matrix
if (nd > 2)
a = [zeros(nd-2,1), eye(nd-2,nd-2); -den(sw)];
else
a = -den(sw);
endif
## Form the B matrix
b = zeros (nd-1, 1);
b(nd-1,1) = 1;
## Form the C matrix
c = num(:,2:nd)-num(:,1)*den;
c = c(:,sw);
## Form the D matrix
d = num(:,1);
endif
endfunction
|