1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
%% -*- texinfo -*-
%% Frequency-weighted coprime factorization controller reduction.
% ===============================================================================
% Coprime Factorization Controller Reduction Lukas Reichlin December 2011
% ===============================================================================
% Reference: Anderson, B.D.O.: Controller Reduction: Concepts and Approaches
% IEEE Transactions of Automatic Control, Vol. 34, No. 8, August 1989
% ===============================================================================
% Tabula Rasa
clear all, close all, clc
% Plant
A = [ -0.161 -6.004 -0.58215 -9.9835 -0.40727 -3.982 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ];
B = [ 1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 ];
C = [ 0.0 0.0 6.4432e-3 2.3196e-3 7.1252e-2 1.0002 0.10455 0.99551 ];
G = ss (A, B, C);
% LQG Design
H = [ 0.0 0.0 0.0 0.0 0.55 11.0 1.32 18.0 ];
q1 = 1e-6;
q2 = 100; % [100, 1000, 2000]
Q = q1 * H.' * H;
R = 1;
W = q2 * B * B.';
V = 1;
F = lqr (G, Q, R)
L = lqe (G, W, V)
% Coprime Factorization using Balanced Truncation Approximation
figure (1)
for k = 8:-1:2
Kr = cfconred (G, F, L, k); % 'method', 'bfsr-bta'
T = feedback (G*Kr);
step (T, 200)
hold on
endfor
hold off
% Coprime Factorization using Singular Perturbation Approximation
figure (2)
for k = 8:-1:2
Kr = cfconred (G, F, L, k, 'method', 'bfsr-spa');
T = feedback (G*Kr);
step (T, 200)
hold on
endfor
hold off
% Frequency-Weighted Coprime Factorization using BTA
figure (3)
for k = 8:-1:2
Kr = fwcfconred (G, F, L, k);
T = feedback (G*Kr);
step (T, 300)
hold on
endfor
hold off
|