1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
%% -*- texinfo -*-
%% Robust control of a mass-damper-spring system.
%% Type @code{which MDSSystem} to locate,
%% @code{edit MDSSystem} to open and simply
%% @code{MDSSystem} to run the example file.
% ===============================================================================
% Robust Control of a Mass-Damper-Spring System Lukas Reichlin August 2011
% ===============================================================================
% Reference: Gu, D.W., Petkov, P.Hr. and Konstantinov, M.M.
% Robust Control Design with Matlab, Springer 2005
% ===============================================================================
% Tabula Rasa
clear all, close all, clc
% ===============================================================================
% System Model
% ===============================================================================
% +---------------+
% | d_m 0 0 |
% +-----| 0 d_c 0 |<----+
% u_m | | 0 0 d_k | | y_m
% u_c | +---------------+ | y_c
% u_k | | y_k
% | +---------------+ |
% +---->| |-----+
% | G_nom |
% u ----->| |-----> y
% +---------------+
% Nominal Values
m_nom = 3; % mass
c_nom = 1; % damping coefficient
k_nom = 2; % spring stiffness
% Perturbations
p_m = 0.4; % 40% uncertainty in the mass
p_c = 0.2; % 20% uncertainty in the damping coefficient
p_k = 0.3; % 30% uncertainty in the spring stiffness
% State-Space Representation
A = [ 0, 1
-k_nom/m_nom, -c_nom/m_nom ];
B1 = [ 0, 0, 0
-p_m, -p_c/m_nom, -p_k/m_nom ];
B2 = [ 0
1/m_nom ];
C1 = [ -k_nom/m_nom, -c_nom/m_nom
0, c_nom
k_nom, 0 ];
C2 = [ 1, 0 ];
D11 = [ -p_m, -p_c/m_nom, -p_k/m_nom
0, 0, 0
0, 0, 0 ];
D12 = [ 1/m_nom
0
0 ];
D21 = [ 0, 0, 0 ];
D22 = [ 0 ];
inname = {'u_m', 'u_c', 'u_k', 'u'}; % input names
outname = {'y_m', 'y_c', 'y_k', 'y'}; % output names
G_nom = ss (A, [B1, B2], [C1; C2], [D11, D12; D21, D22], ...
'inputname', inname, 'outputname', outname);
G = G_nom(4, 4); % extract output y and input u
% ===============================================================================
% Frequency Analysis of Uncertain System
% ===============================================================================
% Uncertainties: -1 <= delta_m, delta_c, delta_k <= 1
[delta_m, delta_c, delta_k] = ndgrid ([-1, 0, 1], [-1, 0, 1], [-1, 0, 1]);
% Bode Plots of Perturbed Plants
w = logspace (-1, 1, 100); % frequency vector
figure (1)
for k = 1 : numel (delta_m)
Delta = diag ([delta_m(k), delta_c(k), delta_k(k)]);
G_per = lft (Delta, G_nom);
bode (G_per, w)
subplot (2, 1, 1)
hold on
subplot (2, 1, 2)
hold on
endfor
% ===============================================================================
% Mixed Sensitivity H-infinity Controller Design (S over KS Method)
% ===============================================================================
% +-------+
% +--------------------->| W_p |----------> e_p
% | +-------+
% | +-------+
% | +---->| W_u |----------> e_u
% | | +-------+
% | | +---------+
% | | ->| |->
% r + e | +-------+ u | | G_nom |
% ----->(+)---+-->| K |----+--->| |----+----> y
% ^ - +-------+ +---------+ |
% | |
% +-----------------------------------------+
% Weighting Functions
s = tf ('s'); % transfer function variable
W_p = 0.95 * (s^2 + 1.8*s + 10) / (s^2 + 8.0*s + 0.01); % performance weighting
W_u = 10^-2; % control weighting
% Synthesis
K_mix = mixsyn (G, W_p, W_u); % mixed-sensitivity H-infinity synthesis
% Interconnections
L_mix = G * K_mix; % open loop
T_mix = feedback (L_mix); % closed loop
% Plotting
figure (2)
bode (K_mix) % bode plot
figure (3)
step (T_mix, 10) % step response for 10 seconds
% ===============================================================================
% H-infinity Loop-Shaping Design (Normalized Coprime Factor Perturbations)
% ===============================================================================
% Settings
W1 = 8 * (2*s + 1) / (0.9*s); % precompensator
W2 = 1; % postcompensator
factor = 1.1; % suboptimal controller
% Synthesis
K_ncf = ncfsyn (G, W1, W2, factor); % positive feedback controller
% Interconnections
K_ncf = -K_ncf; % negative feedback controller
L_ncf = G * K_ncf; % open loop
T_ncf = feedback (L_ncf); % closed loop
% Plotting
figure (4)
bode (K_ncf) % bode plot
figure (5)
step (T_ncf, 10) % step response for 10 seconds
% ===============================================================================
|