1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
## Copyright (C) 2009, 2010 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## Common code for the time response functions step, impulse and initial.
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.2
function [y, t, x_arr] = __time_response__ (sys, resptype, plotflag, tfinal, dt, x0, sysname)
if (! isa (sys, "ss"))
sys = ss (sys); # sys must be proper
endif
if (is_real_vector (tfinal) && length (tfinal) > 1) # time vector t passed
dt = tfinal(2) - tfinal(1); # assume that t is regularly spaced
tfinal = tfinal(end);
endif
[A, B, C, D, tsam] = ssdata (sys);
discrete = ! isct (sys); # static gains are treated as analog systems
tsam = abs (tsam); # use 1 second if tsam is unspecified (-1)
if (discrete)
if (! isempty (dt))
warning ("time_response: argument dt has no effect on sampling time of discrete system");
endif
dt = tsam;
endif
[tfinal, dt] = __sim_horizon__ (A, discrete, tfinal, dt);
if (! discrete)
sys = c2d (sys, dt, "zoh");
endif
[F, G] = ssdata (sys); # matrices C and D don't change
n = rows (F); # number of states
m = columns (G); # number of inputs
p = rows (C); # number of outputs
## time vector
t = reshape (0 : dt : tfinal, [], 1);
l_t = length (t);
switch (resptype)
case "initial"
str = ["Response of ", sysname, " to Initial Conditions"];
yfinal = zeros (p, 1);
## preallocate memory
y = zeros (l_t, p);
x_arr = zeros (l_t, n);
## initial conditions
x = reshape (x0, [], 1); # make sure that x is a column vector
if (n != length (x0) || ! is_real_vector (x0))
error ("initial: x0 must be a real vector with %d elements", n);
endif
## simulation
for k = 1 : l_t
y(k, :) = C * x;
x_arr(k, :) = x;
x = F * x;
endfor
case "step"
str = ["Step Response of ", sysname];
yfinal = dcgain (sys);
## preallocate memory
y = zeros (l_t, p, m);
x_arr = zeros (l_t, n, m);
for j = 1 : m # for every input channel
## initial conditions
x = zeros (n, 1);
u = zeros (m, 1);
u(j) = 1;
## simulation
for k = 1 : l_t
y(k, :, j) = C * x + D * u;
x_arr(k, :, j) = x;
x = F * x + G * u;
endfor
endfor
case "impulse"
str = ["Impulse Response of ", sysname];
yfinal = zeros (p, m);
## preallocate memory
y = zeros (l_t, p, m);
x_arr = zeros (l_t, n, m);
for j = 1 : m # for every input channel
## initial conditions
u = zeros (m, 1);
u(j) = 1;
if (discrete)
x = zeros (n, 1); # zero by definition
y(1, :, j) = D * u / dt;
x_arr(1, :, j) = x;
x = G * u / dt;
else
x = B * u; # B, not G!
y(1, :, j) = C * x;
x_arr(1, :, j) = x;
x = F * x;
endif
## simulation
for k = 2 : l_t
y (k, :, j) = C * x;
x_arr(k, :, j) = x;
x = F * x;
endfor
endfor
if (discrete)
y *= dt;
x_arr *= dt;
endif
otherwise
error ("time_response: invalid response type");
endswitch
if (plotflag) # display plot
## TODO: Set correct titles, especially for multi-input systems
stable = isstable (sys);
outname = get (sys, "outname");
outname = __labels__ (outname, "y_");
if (strcmp (resptype, "initial"))
cols = 1;
else
cols = m;
endif
if (discrete) # discrete system
for k = 1 : p
for j = 1 : cols
subplot (p, cols, (k-1)*cols+j);
if (stable)
stairs (t, [y(:, k, j), yfinal(k, j) * ones(l_t, 1)]);
else
stairs (t, y(:, k, j));
endif
grid ("on");
if (k == 1 && j == 1)
title (str);
endif
if (j == 1)
ylabel (sprintf ("Amplitude %s", outname{k}));
endif
endfor
endfor
xlabel ("Time [s]");
else # continuous system
for k = 1 : p
for j = 1 : cols
subplot (p, cols, (k-1)*cols+j);
if (stable)
plot (t, [y(:, k, j), yfinal(k, j) * ones(l_t, 1)]);
else
plot (t, y(:, k, j));
endif
grid ("on");
if (k == 1 && j == 1)
title (str);
endif
if (j == 1)
ylabel (sprintf ("Amplitude %s", outname{k}));
endif
endfor
endfor
xlabel ("Time [s]");
endif
endif
endfunction
function [tfinal, dt] = __sim_horizon__ (A, discrete, tfinal, Ts)
## code based on __stepimp__.m of Kai P. Mueller and A. Scottedward Hodel
TOL = 1.0e-10; # values below TOL are assumed to be zero
N_MIN = 50; # min number of points
N_MAX = 2000; # max number of points
N_DEF = 1000; # default number of points
T_DEF = 10; # default simulation time
n = rows (A);
eigw = eig (A);
if (discrete)
## perform bilinear transformation on poles in z
for k = 1 : n
pol = eigw(k);
if (abs (pol + 1) < TOL)
eigw(k) = 0;
else
eigw(k) = 2 / Ts * (pol - 1) / (pol + 1);
endif
endfor
endif
## remove poles near zero from eigenvalue array eigw
nk = n;
for k = 1 : n
if (abs (real (eigw(k))) < TOL)
eigw(k) = 0;
nk -= 1;
endif
endfor
if (nk == 0)
if (isempty (tfinal))
tfinal = T_DEF;
endif
if (! discrete)
dt = tfinal / N_DEF;
endif
else
eigw = eigw(find (eigw));
eigw_max = max (abs (eigw));
if (! discrete)
dt = 0.2 * pi / eigw_max;
endif
if (isempty (tfinal))
eigw_min = min (abs (real (eigw)));
tfinal = 5.0 / eigw_min;
## round up
yy = 10^(ceil (log10 (tfinal)) - 1);
tfinal = yy * ceil (tfinal / yy);
endif
if (! discrete)
N = tfinal / dt;
if (N < N_MIN)
dt = tfinal / N_MIN;
endif
if (N > N_MAX)
dt = tfinal / N_MAX;
endif
endif
endif
if (! isempty (Ts)) # catch case cont. system with dt specified
dt = Ts;
endif
endfunction
|