File: filt.m

package info (click to toggle)
octave-control 2.3.52-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,680 kB
  • sloc: cpp: 5,104; objc: 91; makefile: 52
file content (139 lines) | stat: -rw-r--r-- 4,560 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
## Copyright (C) 2012   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{sys} =} filt (@var{num}, @var{den}, @dots{})
## @deftypefnx {Function File} {@var{sys} =} filt (@var{num}, @var{den}, @var{tsam}, @dots{})
## Create discrete-time transfer function model from data in DSP format.
##
## @strong{Inputs}
## @table @var
## @item num
## Numerator or cell of numerators.  Each numerator must be a row vector
## containing the coefficients of the polynomial in ascending powers of z^-1.
## num@{i,j@} contains the numerator polynomial from input j to output i.
## In the SISO case, a single vector is accepted as well.
## @item den
## Denominator or cell of denominators.  Each denominator must be a row vector
## containing the coefficients of the polynomial in ascending powers of z^-1.
## den@{i,j@} contains the denominator polynomial from input j to output i.
## In the SISO case, a single vector is accepted as well.
## @item tsam
## Sampling time in seconds.  If @var{tsam} is not specified,
## default value -1 (unspecified) is taken.
## @item @dots{}
## Optional pairs of properties and values.
## Type @command{set (filt)} for more information.
## @end table
##
## @strong{Outputs}
## @table @var
## @item sys
## Discrete-time transfer function model.
## @end table
##
## @strong{Example}
## @example
## @group
##                 3 z^-1     
## H(z^-1) = -------------------
##           1 + 4 z^-1 + 2 z^-2
##
## octave:1> H = filt ([0, 3], [1, 4, 2])
## 
## Transfer function 'H' from input 'u1' to output ...
## 
##             3 z^-1       
##  y1:  -------------------
##       1 + 4 z^-1 + 2 z^-2
## 
## Sampling time: unspecified
## Discrete-time model.
## @end group
## @end example
##
## @seealso{tf}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: April 2012
## Version: 0.1

function sys = filt (num = {}, den = {}, tsam = -1, varargin)

  switch (nargin)
    case 0              # filt ()
      sys = tf ();
      ## sys.inv = true;
      return;

    case 1              # filt (sys), filt (matrix)
      if (isa (num, "lti") || is_real_matrix (num))
        sys = tf (num);
        ## sys.inv = true;  # would be a problem for continuous-time LTI models
        return;
      else
        print_usage ();
      endif

    otherwise           # filt (num, den, ...)
      if (! iscell (num))
        num = {num};
      endif
      if (! iscell (den))
        den = {den};
      endif

      ## convert from z^-1 to z
      ## expand each channel by z^x, where x is the largest exponent of z^-1 (z^-x)

      ## remove trailing zeros
      ## such that polynomials are as short as possible
      num = cellfun (@__remove_trailing_zeros__, num, "uniformoutput", false);
      den = cellfun (@__remove_trailing_zeros__, den, "uniformoutput", false);

      ## make numerator and denominator polynomials equally long
      ## by adding trailing zeros
      lnum = cellfun (@length, num, "uniformoutput", false);
      lden = cellfun (@length, den, "uniformoutput", false);

      lmax = cellfun (@max, lnum, lden, "uniformoutput", false);

      num = cellfun (@postpad, num, lmax, "uniformoutput", false);
      den = cellfun (@postpad, den, lmax, "uniformoutput", false);

      ## use standard tf constructor
      ## sys is stored in standard z form, not z^-1
      ## so we can mix it with regular transfer function models
      ## property "inv", true displays sys in z^-1 form
      sys = tf (num, den, tsam, "inv", true, varargin{:});
  endswitch

endfunction

%!shared num, den, n1, d1, n2, d2, n2e, d2e
%! num = [0, 3];
%! den = [1, 4, 2];
%! sys = filt (num, den);
%! [n1, d1] = filtdata (sys, "vector");
%! [n2, d2] = tfdata (sys, "vector");
%! n2e = [3, 0];
%! d2e = [1, 4, 2];
%!assert (n1, num, 1e-4);
%!assert (d1, den, 1e-4);
%!assert (n2, n2e, 1e-4);
%!assert (d2, d2e, 1e-4);