1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
## Copyright (C) 2012 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{sys} =} filt (@var{num}, @var{den}, @dots{})
## @deftypefnx {Function File} {@var{sys} =} filt (@var{num}, @var{den}, @var{tsam}, @dots{})
## Create discrete-time transfer function model from data in DSP format.
##
## @strong{Inputs}
## @table @var
## @item num
## Numerator or cell of numerators. Each numerator must be a row vector
## containing the coefficients of the polynomial in ascending powers of z^-1.
## num@{i,j@} contains the numerator polynomial from input j to output i.
## In the SISO case, a single vector is accepted as well.
## @item den
## Denominator or cell of denominators. Each denominator must be a row vector
## containing the coefficients of the polynomial in ascending powers of z^-1.
## den@{i,j@} contains the denominator polynomial from input j to output i.
## In the SISO case, a single vector is accepted as well.
## @item tsam
## Sampling time in seconds. If @var{tsam} is not specified,
## default value -1 (unspecified) is taken.
## @item @dots{}
## Optional pairs of properties and values.
## Type @command{set (filt)} for more information.
## @end table
##
## @strong{Outputs}
## @table @var
## @item sys
## Discrete-time transfer function model.
## @end table
##
## @strong{Example}
## @example
## @group
## 3 z^-1
## H(z^-1) = -------------------
## 1 + 4 z^-1 + 2 z^-2
##
## octave:1> H = filt ([0, 3], [1, 4, 2])
##
## Transfer function 'H' from input 'u1' to output ...
##
## 3 z^-1
## y1: -------------------
## 1 + 4 z^-1 + 2 z^-2
##
## Sampling time: unspecified
## Discrete-time model.
## @end group
## @end example
##
## @seealso{tf}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: April 2012
## Version: 0.1
function sys = filt (num = {}, den = {}, tsam = -1, varargin)
switch (nargin)
case 0 # filt ()
sys = tf ();
## sys.inv = true;
return;
case 1 # filt (sys), filt (matrix)
if (isa (num, "lti") || is_real_matrix (num))
sys = tf (num);
## sys.inv = true; # would be a problem for continuous-time LTI models
return;
else
print_usage ();
endif
otherwise # filt (num, den, ...)
if (! iscell (num))
num = {num};
endif
if (! iscell (den))
den = {den};
endif
## convert from z^-1 to z
## expand each channel by z^x, where x is the largest exponent of z^-1 (z^-x)
## remove trailing zeros
## such that polynomials are as short as possible
num = cellfun (@__remove_trailing_zeros__, num, "uniformoutput", false);
den = cellfun (@__remove_trailing_zeros__, den, "uniformoutput", false);
## make numerator and denominator polynomials equally long
## by adding trailing zeros
lnum = cellfun (@length, num, "uniformoutput", false);
lden = cellfun (@length, den, "uniformoutput", false);
lmax = cellfun (@max, lnum, lden, "uniformoutput", false);
num = cellfun (@postpad, num, lmax, "uniformoutput", false);
den = cellfun (@postpad, den, lmax, "uniformoutput", false);
## use standard tf constructor
## sys is stored in standard z form, not z^-1
## so we can mix it with regular transfer function models
## property "inv", true displays sys in z^-1 form
sys = tf (num, den, tsam, "inv", true, varargin{:});
endswitch
endfunction
%!shared num, den, n1, d1, n2, d2, n2e, d2e
%! num = [0, 3];
%! den = [1, 4, 2];
%! sys = filt (num, den);
%! [n1, d1] = filtdata (sys, "vector");
%! [n2, d2] = tfdata (sys, "vector");
%! n2e = [3, 0];
%! d2e = [1, 4, 2];
%!assert (n1, num, 1e-4);
%!assert (d1, den, 1e-4);
%!assert (n2, n2e, 1e-4);
%!assert (d2, d2e, 1e-4);
|