File: lsim.m

package info (click to toggle)
octave-control 2.3.52-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,680 kB
  • sloc: cpp: 5,104; objc: 91; makefile: 52
file content (195 lines) | stat: -rw-r--r-- 6,998 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
## Copyright (C) 2009, 2010, 2011   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{x0})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{[]}, @var{method})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{x0}, @var{method})
## Simulate LTI model response to arbitrary inputs.  If no output arguments are given,
## the system response is plotted on the screen.
##
## @strong{Inputs}
## @table @var
## @item sys
## LTI model.  System must be proper, i.e. it must not have more zeros than poles.
## @item u
## Vector or array of input signal.  Needs @code{length(t)} rows and as many columns
## as there are inputs.  If @var{sys} is a single-input system, row vectors @var{u}
## of length @code{length(t)} are accepted as well.
## @item t
## Time vector.  Should be evenly spaced.  If @var{sys} is a continuous-time system
## and @var{t} is a real scalar, @var{sys} is discretized with sampling time
## @code{tsam = t/(rows(u)-1)}.  If @var{sys} is a discrete-time system and @var{t}
## is not specified, vector @var{t} is assumed to be @code{0 : tsam : tsam*(rows(u)-1)}.
## @item x0
## Vector of initial conditions for each state.  If not specified, a zero vector is assumed.
## @item method
## Discretization method for continuous-time models.  Default value is zoh
## (zero-order hold).  All methods from @code{c2d} are supported. 
## @end table
##
## @strong{Outputs}
## @table @var
## @item y
## Output response array.  Has as many rows as time samples (length of t)
## and as many columns as outputs.
## @item t
## Time row vector.  It is always evenly spaced.
## @item x
## State trajectories array.  Has @code{length (t)} rows and as many columns as states.
## @end table
##
## @seealso{impulse, initial, step}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.3

function [y_r, t_r, x_r] = lsim (sys, u, t = [], x0 = [], method = "zoh")

  ## TODO: multiplot feature:   lsim (sys1, "b", sys2, "r", ..., u, t)

  if (nargin < 2 || nargin > 5)
    print_usage ();
  endif

  if (! isa (sys, "ss"))
    sys = ss (sys);                             # sys must be proper
  endif

  if (is_real_vector (u))
    u = reshape (u, [], 1);                     # allow row vectors for single-input systems
  elseif (! is_real_matrix (u))
    error ("lsim: input signal u must be an array of real numbers");
  endif
  
  if (! is_real_vector (t) && ! isempty (t))
    error ("lsim: time vector t must be real or empty");
  endif
  
  discrete = ! isct (sys);                      # static gains are treated as continuous-time systems
  tsam = abs (get (sys, "tsam"));               # use 1 second as default if tsam is unspecified (-1)
  urows = rows (u);
  ucols = columns (u);

  if (discrete)                                 # discrete system
    if (isempty (t))                            # lsim (sys, u)
      dt = tsam;
      tinitial = 0;
      tfinal = tsam * (urows - 1);
    elseif (length (t) == 1)                    # lsim (sys, u, tfinal)
      dt = tsam;
      tinitial = 0;
      tfinal = t;
    else                                        # lsim (sys, u, t, ...)
      warning ("lsim: spacing of time vector has no effect on sampling time of discrete system");
      dt = tsam;
      tinitial = t(1);
      tfinal = t(end);
    endif
  else                                          # continuous system
    if (isempty (t))                            # lsim (sys, u, [], ...)
      error ("lsim: invalid time vector");
    elseif (length (t) == 1)                    # lsim (sys, u, tfinal, ...)
      dt = t / (urows - 1);
      tinitial = 0;
      tfinal = t;
    else                                        # lsim (sys, u, t, ...)
      dt = t(2) - t(1);                         # assume that t is regularly spaced
      tinitial = t(1);
      tfinal = t(end);
    endif
    sys = c2d (sys, dt, method);                # convert to discrete-time model
  endif

  [A, B, C, D] = ssdata (sys);

  n = rows (A);                                 # number of states
  m = columns (B);                              # number of inputs
  p = rows (C);                                 # number of outputs

  t = reshape (tinitial : dt : tfinal, [], 1);  # time vector
  trows = length (t);

  if (urows != trows)
    error ("lsim: input vector u must have %d rows", trows);
  endif
  
  if (ucols != m)
    error ("lsim: input vector u must have %d columns", m);
  endif

  ## preallocate memory
  y = zeros (trows, p);
  x_arr = zeros (trows, n);

  ## initial conditions
  if (isempty (x0))
    x0 = zeros (n, 1);
  elseif (n != length (x0) || ! is_real_vector (x0))
    error ("initial: x0 must be a vector with %d elements", n);
  endif

  x = reshape (x0, [], 1);                      # make sure that x is a column vector

  ## simulation
  for k = 1 : trows
    y(k, :) = C * x  +  D * u(k, :).';
    x_arr(k, :) = x;
    x = A * x  +  B * u(k, :).';
  endfor

  if (nargout == 0)                             # plot information
    str = ["Linear Simulation Results of ", inputname(1)];
    outname = get (sys, "outname");
    outname = __labels__ (outname, "y_");
    if (discrete)                               # discrete system
      for k = 1 : p
        subplot (p, 1, k);
        stairs (t, y(:, k));
        grid ("on");
        if (k == 1)
          title (str);
        endif
        ylabel (sprintf ("Amplitude %s", outname{k}));
      endfor
      xlabel ("Time [s]");
    else                                        # continuous system
      for k = 1 : p
        subplot (p, 1, k);
        plot (t, y(:, k));
        grid ("on");
        if (k == 1)
          title (str);
        endif
        ylabel (sprintf ("Amplitude %s", outname{k}));
      endfor
      xlabel ("Time [s]");
    endif
  else                                          # return values
    y_r = y;
    t_r = t;
    x_r = x_arr;
  endif

endfunction


## TODO: add test cases