1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
## Copyright (C) 2009, 2010, 2011 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{x0})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{[]}, @var{method})
## @deftypefnx{Function File} {[@var{y}, @var{t}, @var{x}] =} lsim (@var{sys}, @var{u}, @var{t}, @var{x0}, @var{method})
## Simulate LTI model response to arbitrary inputs. If no output arguments are given,
## the system response is plotted on the screen.
##
## @strong{Inputs}
## @table @var
## @item sys
## LTI model. System must be proper, i.e. it must not have more zeros than poles.
## @item u
## Vector or array of input signal. Needs @code{length(t)} rows and as many columns
## as there are inputs. If @var{sys} is a single-input system, row vectors @var{u}
## of length @code{length(t)} are accepted as well.
## @item t
## Time vector. Should be evenly spaced. If @var{sys} is a continuous-time system
## and @var{t} is a real scalar, @var{sys} is discretized with sampling time
## @code{tsam = t/(rows(u)-1)}. If @var{sys} is a discrete-time system and @var{t}
## is not specified, vector @var{t} is assumed to be @code{0 : tsam : tsam*(rows(u)-1)}.
## @item x0
## Vector of initial conditions for each state. If not specified, a zero vector is assumed.
## @item method
## Discretization method for continuous-time models. Default value is zoh
## (zero-order hold). All methods from @code{c2d} are supported.
## @end table
##
## @strong{Outputs}
## @table @var
## @item y
## Output response array. Has as many rows as time samples (length of t)
## and as many columns as outputs.
## @item t
## Time row vector. It is always evenly spaced.
## @item x
## State trajectories array. Has @code{length (t)} rows and as many columns as states.
## @end table
##
## @seealso{impulse, initial, step}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.3
function [y_r, t_r, x_r] = lsim (sys, u, t = [], x0 = [], method = "zoh")
## TODO: multiplot feature: lsim (sys1, "b", sys2, "r", ..., u, t)
if (nargin < 2 || nargin > 5)
print_usage ();
endif
if (! isa (sys, "ss"))
sys = ss (sys); # sys must be proper
endif
if (is_real_vector (u))
u = reshape (u, [], 1); # allow row vectors for single-input systems
elseif (! is_real_matrix (u))
error ("lsim: input signal u must be an array of real numbers");
endif
if (! is_real_vector (t) && ! isempty (t))
error ("lsim: time vector t must be real or empty");
endif
discrete = ! isct (sys); # static gains are treated as continuous-time systems
tsam = abs (get (sys, "tsam")); # use 1 second as default if tsam is unspecified (-1)
urows = rows (u);
ucols = columns (u);
if (discrete) # discrete system
if (isempty (t)) # lsim (sys, u)
dt = tsam;
tinitial = 0;
tfinal = tsam * (urows - 1);
elseif (length (t) == 1) # lsim (sys, u, tfinal)
dt = tsam;
tinitial = 0;
tfinal = t;
else # lsim (sys, u, t, ...)
warning ("lsim: spacing of time vector has no effect on sampling time of discrete system");
dt = tsam;
tinitial = t(1);
tfinal = t(end);
endif
else # continuous system
if (isempty (t)) # lsim (sys, u, [], ...)
error ("lsim: invalid time vector");
elseif (length (t) == 1) # lsim (sys, u, tfinal, ...)
dt = t / (urows - 1);
tinitial = 0;
tfinal = t;
else # lsim (sys, u, t, ...)
dt = t(2) - t(1); # assume that t is regularly spaced
tinitial = t(1);
tfinal = t(end);
endif
sys = c2d (sys, dt, method); # convert to discrete-time model
endif
[A, B, C, D] = ssdata (sys);
n = rows (A); # number of states
m = columns (B); # number of inputs
p = rows (C); # number of outputs
t = reshape (tinitial : dt : tfinal, [], 1); # time vector
trows = length (t);
if (urows != trows)
error ("lsim: input vector u must have %d rows", trows);
endif
if (ucols != m)
error ("lsim: input vector u must have %d columns", m);
endif
## preallocate memory
y = zeros (trows, p);
x_arr = zeros (trows, n);
## initial conditions
if (isempty (x0))
x0 = zeros (n, 1);
elseif (n != length (x0) || ! is_real_vector (x0))
error ("initial: x0 must be a vector with %d elements", n);
endif
x = reshape (x0, [], 1); # make sure that x is a column vector
## simulation
for k = 1 : trows
y(k, :) = C * x + D * u(k, :).';
x_arr(k, :) = x;
x = A * x + B * u(k, :).';
endfor
if (nargout == 0) # plot information
str = ["Linear Simulation Results of ", inputname(1)];
outname = get (sys, "outname");
outname = __labels__ (outname, "y_");
if (discrete) # discrete system
for k = 1 : p
subplot (p, 1, k);
stairs (t, y(:, k));
grid ("on");
if (k == 1)
title (str);
endif
ylabel (sprintf ("Amplitude %s", outname{k}));
endfor
xlabel ("Time [s]");
else # continuous system
for k = 1 : p
subplot (p, 1, k);
plot (t, y(:, k));
grid ("on");
if (k == 1)
title (str);
endif
ylabel (sprintf ("Amplitude %s", outname{k}));
endfor
xlabel ("Time [s]");
endif
else # return values
y_r = y;
t_r = t;
x_r = x_arr;
endif
endfunction
## TODO: add test cases
|