1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
## Copyright (C) 2009 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{rcond}] =} mixsyn (@var{G}, @var{W1}, @var{W2}, @var{W3}, @dots{})
## Solve stacked S/KS/T H-infinity problem. Bound the largest singular values
## of @var{S} (for performance), @var{K S} (to penalize large inputs) and
## @var{T} (for robustness and to avoid sensitivity to noise).
## In other words, the inputs r are excited by a harmonic test signal.
## Then the algorithm tries to find a controller @var{K} which minimizes
## the H-infinity norm calculated from the outputs z.
##
## @strong{Inputs}
## @table @var
## @item G
## LTI model of plant.
## @item W1
## LTI model of performance weight. Bounds the largest singular values of sensitivity @var{S}.
## Model must be empty @code{[]}, SISO or of appropriate size.
## @item W2
## LTI model to penalize large control inputs. Bounds the largest singular values of @var{KS}.
## Model must be empty @code{[]}, SISO or of appropriate size.
## @item W3
## LTI model of robustness and noise sensitivity weight. Bounds the largest singular values of
## complementary sensitivity @var{T}. Model must be empty @code{[]}, SISO or of appropriate size.
## @item @dots{}
## Optional arguments of @command{hinfsyn}. Type @command{help hinfsyn} for more information.
## @end table
##
## All inputs must be proper/realizable.
## Scalars, vectors and matrices are possible instead of LTI models.
##
## @strong{Outputs}
## @table @var
## @item K
## State-space model of the H-infinity (sub-)optimal controller.
## @item N
## State-space model of the lower LFT of @var{P} and @var{K}.
## @item gamma
## L-infinity norm of @var{N}.
## @item rcond
## Vector @var{rcond} contains estimates of the reciprocal condition
## numbers of the matrices which are to be inverted and
## estimates of the reciprocal condition numbers of the
## Riccati equations which have to be solved during the
## computation of the controller @var{K}. For details,
## see the description of the corresponding SLICOT algorithm.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##
## | W1 S |
## gamma = min||N(K)|| N = | W2 K S | = lft (P, K)
## K inf | W3 T |
## @end group
## @end example
## @example
## @group
## +------+ z1
## +---------------------------------------->| W1 |----->
## | +------+
## | +------+ z2
## | +---------------------->| W2 |----->
## | | +------+
## r + e | +--------+ u | +--------+ y +------+ z3
## ----->(+)---+-->| K(s) |----+-->| G(s) |----+---->| W3 |----->
## ^ - +--------+ +--------+ | +------+
## | |
## +----------------------------------------+
## @end group
## @end example
## @example
## @group
## +--------+
## | |-----> z1 (p1x1) z1 = W1 e
## r (px1) ----->| P(s) |-----> z2 (p2x1) z2 = W2 u
## | |-----> z3 (p3x1) z3 = W3 y
## u (mx1) ----->| |-----> e (px1) e = r - y
## +--------+
## @end group
## @end example
## @example
## @group
## +--------+
## r ----->| |-----> z
## | P(s) |
## u +---->| |-----+ e
## | +--------+ |
## | |
## | +--------+ |
## +-----| K(s) |<----+
## +--------+
## @end group
## @end example
## @example
## @group
## +--------+
## r ----->| N(s) |-----> z
## +--------+
## @end group
## @end example
## @example
## @group
## Extended Plant: P = augw (G, W1, W2, W3)
## Controller: K = mixsyn (G, W1, W2, W3)
## Entire System: N = lft (P, K)
## Open Loop: L = G * K
## Closed Loop: T = feedback (L)
## @end group
## @end example
## @example
## @group
## Reference:
## Skogestad, S. and Postlethwaite I.
## Multivariable Feedback Control: Analysis and Design
## Second Edition
## Wiley 2005
## Chapter 3.8: General Control Problem Formulation
## @end group
## @end example
##
## @strong{Algorithm}@*
## Relies on commands @command{augw} and @command{hinfsyn},
## which use SLICOT SB10FD and SB10DD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{hinfsyn, augw}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.1
function [K, N, gamma, rcond] = mixsyn (G, W1 = [], W2 = [], W3 = [], varargin)
if (nargin == 0)
print_usage ();
endif
[p, m] = size (G);
P = augw (G, W1, W2, W3);
[K, N, gamma, rcond] = hinfsyn (P, p, m, varargin{:});
endfunction
|