1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
## Copyright (C) 2017 Mark Bronsfeld
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} damp(@var{sys})
## @deftypefnx {Function File} {[@var{Wn}, @var{zeta}] =} damp(@var{sys})
## @deftypefnx {Function File} {[@var{Wn}, @var{zeta}, @var{P}] =} damp(@var{sys})
## Calculate natural frequencies, damping ratios and poles.
##
## If no output is specified, display overview table containing poles,
## magnitude (if @var{sys} is a discrete-time model), damping ratios, natural
## frequencies and time constants.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} model.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Wn
## Natural frequencies of each pole of @var{sys} (in increasing order).
## The frequency unit is rad/s (radians per second).
## If @var{sys} is a discrete-time model with specified sample time, @var{Wn}
## contains the natural frequencies of the equivalent continuous-time poles
## (see Algorithms). If @var{sys} has an unspecified sample time
## (@var{tsam =} -1), @var{tsam =} 1 is used to calculate @var{Wn}.
## @item zeta
## Damping ratios of each pole of @var{sys} (in the same order as @var{Wn}).
## If @var{sys} is a discrete-time model with specified sample time,
## @var{zeta} contains the damping ratios of the equivalent continuous-time
## poles (see Algorithms). If @var{sys} has an unspecified sample time
## (@var{tsam =} -1), @var{tsam =} 1 is used to calculate @var{zeta}.
## @item P
## Poles of @var{sys} (in the same order as @var{Wn}).
## @end table
##
## @strong{Algorithm}@*
## @table @var
## @item Pole
## Poles s (or z for discrete-time models) are calculated via @command{pole}
## and resorted in order of increasing natural frequency.
## @item Equivalent continuous-time pole
## s = log (z) / sys.tsam (discrete-time models only)
## @item Magnitude
## mag = abs (z) (discrete-time models only)
## @item Natural Frequency
## Wn = abs (s)
## @item Damping ratio
## zeta = -cos (arg (s))
## @item Time constant
## tau = 1 / (Wn * zeta)
## @end table
##
## @seealso{dsort, eig, esort, pole, pzmap, zero}
## @end deftypefn
## Author: Mark Bronsfeld <m.brnsfld@googlemail.com>
## Created: January 2017
## Version: 0.1
function [Wn_out, zeta, P] = damp (sys)
if (nargin == 1) # damp (sys)
if (! (isa (sys, "lti") || issquare (sys)))
error ("damp: argument must be an LTI system");
endif
else
print_usage ();
endif
P = pole (sys); # Poles
## Distinguish between system/state matrices, continuous- and ...
## discrete-time models
if ((! (isa (sys, "lti")) && issquare (sys)) || (isct (sys)))
s = P;
elseif (isdt (sys))
if (sys.tsam == -1) # If sample time is unspecified...
s = log (P); # ...assume 1 second: log (P) / 1
else
s = log (P) ./ sys.tsam;
endif
mag = abs (P); # Magnitude
endif
Wn = abs (s); # Frequencies (rad / seconds)
## Sort all vectors in order of increasing natural frequency
[Wn, ndx] = sort (Wn);
P = P (ndx);
s = s (ndx);
zeta = -cos (arg (s)); # Damping
tau = 1 ./ (Wn .* zeta); # Time constant (seconds)
## Suppress "ans" output if no output specified (only assign "Wn_out" ...
## if any output specified)
if (nargout > 0)
Wn_out = Wn;
## Display overview table when no output specified
elseif (nargout == 0)
## Type conversion and formatting to exponential format
P = num2str (P, '%1.2e');
zeta = num2str (zeta, '%1.2e');
Wn = num2str (Wn, '%1.2e');
tau = num2str (tau, '%1.2e');
## Construct columns of overview table
Pole = [['Pole'; ' '; ' ']; P];
Damping = [['Damping'; ' '; ' ']; zeta];
Frequency = [['Frequency'; '(rad/seconds)'; ' ']; Wn];
TimeConstant = [['Time Constant'; '(seconds)'; ' ']; tau];
## Construct overview table - distinguish between system/state ...
## matrices, continuous- and discrete-time models
if ((! (isa (sys, "lti")) && issquare (sys)) || (isct (sys)))
## Overview table
overview_table = [repmat(' ',rows(Pole),3) Pole ...
repmat(' ',rows(Pole),4) Damping ...
repmat(' ',rows(Pole),4) Frequency ...
repmat(' ',rows(Pole),4) TimeConstant];
elseif (isdt (sys))
mag = mag (ndx); # Sort vector in order of increasing natural frequency
mag = num2str (mag, '%1.2e'); # Type conversion and formatting to ...
# exponential format
Magnitude = [['Magnitude'; ' '; ' ']; mag]; # Construct additional ...
# column of overview table
## Overview table
overview_table = [repmat(' ',rows(Pole),3) Pole ...
repmat(' ',rows(Pole),4) Magnitude ...
repmat(' ',rows(Pole),4) Damping ....
repmat(' ',rows(Pole),4) Frequency ....
repmat(' ',rows(Pole),4) TimeConstant];
endif
disp (overview_table); # Display overview table
endif
endfunction
## Test system/state matrix
%!test
%! A = [-1, 0, 0;
%! 0, -2, 0;
%! 0, 0, -3 ];
%!
%! Wn_exp = [1;
%! 2;
%! 3 ];
%!
%! zeta_exp = [1;
%! 1;
%! 1 ];
%!
%! P_exp = [-1;
%! -2;
%! -3 ];
%!
%! [Wn_obs, zeta_obs, P_obs] = damp (ss (A, ones (3, 1)));
%!
%! assert (Wn_obs, Wn_exp, 0);
%! assert (zeta_obs, zeta_exp, 0);
%! assert (P_obs, P_exp, 0);
## Test continuous-time model
%!test
%! H = tf ([2, 5, 1], [1, 2, 3]);
%!
%! Wn_exp = [1.7321;
%! 1.7321 ];
%!
%! zeta_exp = [0.5774;
%! 0.5774 ];
%!
%! P_exp = [-1.0000 + 1.4142i;
%! -1.0000 - 1.4142i ];
%!
%! [Wn_obs, zeta_obs, P_obs] = damp (H);
%!
%! assert (Wn_obs, Wn_exp, 1e-4);
%! assert (zeta_obs, zeta_exp, 1e-4);
%! assert (P_obs, P_exp, 1e-4);
## Test discrete-time model
%!test
%! H = tf ([5, 3, 1], [1, 6, 4, 4], 0.01);
%!
%! Wn_exp = [193.4924;
%! 193.4924;
%! 356.5264 ];
%!
%! zeta_exp = [ 0.0774;
%! 0.0774;
%! -0.4728 ];
%!
%! P_exp = [-0.3020 + 0.8063i;
%! -0.3020 - 0.8063i;
%! -5.3961 + 0.0000i ];
%!
%! [Wn_obs, zeta_obs, P_obs] = damp (H);
%!
%! assert (Wn_obs, Wn_exp, 1e-4);
%! assert (zeta_obs, zeta_exp, 1e-4);
%! assert (P_obs, P_exp, 1e-4);
|