1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
## Copyright (C) 2009-2016 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{est} =} estim (@var{sys}, @var{l})
## @deftypefnx {Function File} {@var{est} =} estim (@var{sys}, @var{l}, @var{sensors}, @var{known})
## @deftypefnx {Function File} {@var{est} =} estim (@var{sys}, @var{l}, @var{sensors}, @var{known}, @var{type})
## Return state estimator for a given estimator gain.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} model.
## @item l
## State feedback matrix.
## @item sensors
## Indices of measured output signals y from @var{sys}. If omitted or empty,
## all outputs are measured.
## @item known
## Indices of known input signals u (deterministic) to @var{sys}.
## All other inputs to @var{sys} are assumed stochastic (w).
## If argument @var{known} is omitted or empty, no inputs u are known.
## @item type
## Type of the estimator for discrete-time systems. If set to 'delayed' the current
## estimation is based on y(k-1), if set to 'current' the current estimation is
## based on the lates mesaruement y(k). If omitted, the 'delayed' version is created.
## @end table
##
## @strong{Outputs}
## @table @var
## @item est
## State-space model of estimator.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
## u +-------+ ^
## +---------------------------->| |-------> y
## | +-------+ + y | est | ^
## u ----+--->| |----->(+)------>| |-------> x
## | sys | ^ + +-------+
## w -------->| | |
## +-------+ | v
## @end group
## @end example
##
## @strong{Remarks}
##
## The argument @var{type} is for discrete-time systems only. If set to 'current',
## the follwong prediction-correction scheme is used:
## @example
## @group
## ^ ^
## x*(k+1) = A x(k) + B u(k)
## ^ ^ -1
## x(k) = x*(k) + A L (y(k) - C x*(k) - D u(k))
## @end group
## @end example
## The inverse fo the system matrix in the above equations is required
## for maintaining the desired observer error dynamics given by (A - LC).
##
## The advantage of this structure is that the current measurement y(k)
## is used for the current estiamted state and not for the next allowing
## the estimator to react to system disturbances faster. L is the
## observer feedback matrix for the common observer structure with
## the matrix (A - LC) being asymptotically stable, i.e. has
## eigenvalues strictly within the unit circle.
##
## @seealso{kalman, lqe, place}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: November 2009
## Version: 0.3
function est = estim (sys, l, sensors = [], known = [], type = 'delayed')
if (nargin < 2 || nargin > 5)
print_usage ();
endif
if (! isa (sys, "lti"))
error ("estim: first argument must be an LTI system");
endif
sys = ss (sys); # needed to get stname from tf models
[a, b, c, d, e, tsam] = dssdata (sys, []);
[inn, stn, outn, ing, outg] = get (sys, "inname", "stname", "outname", "ingroup", "outgroup");
if (isempty (sensors))
sensors = 1 : rows (c);
endif
if (ischar (sensors))
sensors = {sensors};
endif
if (ischar (known))
known = {known};
endif
if (iscell (sensors))
tmp = cellfun (@(x) __str2idx__ (outg, outn, x, "out"), sensors(:), "uniformoutput", false);
sensors = vertcat (tmp{:});
endif
if (iscell (known))
tmp = cellfun (@(x) __str2idx__ (ing, inn, x, "in"), known(:), "uniformoutput", false);
known = vertcat (tmp{:});
endif
m = length (known);
n = rows (a);
p = length (sensors);
if (rows (l) != n)
error ("estim: system '%s' has %d states, but the state estimator gain '%s' has %d rows", ...
inputname (1), n, inputname (2), rows (l));
endif
if (columns (l) != p)
error ("estim: estimator gain '%s' has %d columns, but argument 'known' contains %d indices", ...
inputname (2), columns (l), p);
endif
b = b(:, known);
c = c(sensors, :);
d = d(sensors, known);
stname = __labels__ (stn, "xhat");
outname = vertcat (__labels__ (outn(sensors(:)), "yhat"), stname);
inname = vertcat (__labels__ (inn(known(:)), "u"), __labels__ (outn(sensors(:)), "y"));
if strcmp (type, 'current')
if isct (sys)
warning ("kalman: ignoring 'type' parameter for continuous-time estimator\n");
type = 'delayed';
else
if (cond (a) > 1e12)
error ("estimd: system '%s' has noninvertibla system matrix", ...
inputname (1));
endif
endif
endif
if strcmp (type, 'current')
l = inv(a) * l;
i_lc = eye(n,n) - l*c;
f = a * i_lc;
g = [ b-a*l*d, a*l ];
h = [ c*i_lc
i_lc ];
j = [ -c*l*d, c*l;
-l*d, l ];
## k = e;
else
f = a - l*c;
g = [b - l*d, l];
h = [c; eye(n)];
j = [d, zeros(p, p); zeros(n, m), zeros(n, p)];
## k = e;
endif
est = dss (f, g, h, j, e, tsam);
est = set (est, "inname", inname, "stname", stname, "outname", outname);
endfunction
%!test
%! sys = ss (-2, 1, 1, 3);
%! est = estim (sys, 5);
%! [a, b, c, d] = ssdata (est);
%! m = [a, b; c, d];
%! m_exp = [-7, 5; 1, 0; 1, 0];
%! assert (m, m_exp, 1e-4);
%!test
%! sys = ss (-1, 2, 3, 4);
%! est = estim (sys, 5);
%! [a, b, c, d] = ssdata (est);
%! m = [a, b; c, d];
%! m_exp = [-16, 5; 3, 0; 1, 0];
%! assert (m, m_exp, 1e-4);
## The following test use the same system
%!shared A, B, C, D, L, sysd, x0, xo0, u, k, y, x
%! A = [ 0 1 0 ; 0 0 1 ; 0.5120 0.640 -0.800];
%! B = [ 0; 0; 1 ];
%! C = [ 0.1 0 0 ];
%! D = 1;
%! L = place (A',C',zeros(1,3))'; % Deadbeat
%! sysd = ss (A,B,C,D,1);
%! x0 = [ .1 .1 .1 ];
%! xo0 = [ 0 0 0 ];
%! k = 0:1:25;
%! u = 0.1*sin(0.5*k).*cos(0.4*k).^2;
%! [y,t,x] = lsim (sysd, u, k, x0);
%!test
%! estc = estim (sysd, L, [], 1, 'current');
%! [yoc,t,~] = lsim (estc, [u' y], k, xo0);
%! xoc = yoc(:,2:end);
%! ec = xoc - x;
%! assert (ec(3,:), zeros(1,3), 1e-4); % ed already zero for k = 2
%!test
%! estd = estim (sysd, L, [], 1);
%! [yod,t,~] = lsim (estd, [u' y], k, xo0);
%! xod = yod(:,2:end);
%! ed = xod - x;
%! assert (ed(1,:), xo0 - x0, 1e-4); % ec not corrected at k = 0
%! assert (ed(4,:), zeros(1,3), 1e-4); % ec zero for k = 3
|