File: estim.m

package info (click to toggle)
octave-control 4.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,924 kB
  • sloc: fortran: 122,524; cpp: 6,954; objc: 210; makefile: 40; xml: 33; sh: 3
file content (227 lines) | stat: -rw-r--r-- 6,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
## Copyright (C) 2009-2016   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{est} =} estim (@var{sys}, @var{l})
## @deftypefnx {Function File} {@var{est} =} estim (@var{sys}, @var{l}, @var{sensors}, @var{known})
## @deftypefnx {Function File} {@var{est} =} estim (@var{sys}, @var{l}, @var{sensors}, @var{known}, @var{type})
## Return state estimator for a given estimator gain.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} model.
## @item l
## State feedback matrix.
## @item sensors
## Indices of measured output signals y from @var{sys}. If omitted or empty,
## all outputs are measured.
## @item known
## Indices of known input signals u (deterministic) to @var{sys}.
## All other inputs to @var{sys} are assumed stochastic (w).
## If argument @var{known} is omitted or empty, no inputs u are known.
## @item type
## Type of the estimator for discrete-time systems. If set to 'delayed' the current
## estimation is based on y(k-1), if set to 'current' the current estimation is
## based on the lates mesaruement y(k). If omitted, the 'delayed' version is created.
## @end table
##
## @strong{Outputs}
## @table @var
## @item est
## State-space model of estimator.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##                                  u  +-------+         ^
##       +---------------------------->|       |-------> y
##       |    +-------+     +       y  |  est  |         ^
## u ----+--->|       |----->(+)------>|       |-------> x
##            |  sys  |       ^ +      +-------+
## w -------->|       |       |
##            +-------+       | v
## @end group
## @end example
##
## @strong{Remarks}
##
## The argument @var{type} is for discrete-time systems only. If set to 'current',
## the follwong prediction-correction scheme is used:
## @example
## @group
## ^           ^
## x*(k+1) = A x(k) + B u(k)
##    ^      ^        -1
##    x(k) = x*(k) + A   L (y(k) - C x*(k) - D u(k))
## @end group
## @end example
## The inverse fo the system matrix in the above equations is required
## for maintaining the desired observer error dynamics given by (A - LC).
##
## The advantage of this structure is that the current measurement y(k)
## is used for the current estiamted state and not for the next allowing
## the estimator to react to system disturbances faster. L is the
## observer feedback matrix for the common observer structure with
## the matrix (A - LC) being asymptotically stable, i.e. has
## eigenvalues strictly within the unit circle.
##
## @seealso{kalman, lqe, place}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: November 2009
## Version: 0.3

function est = estim (sys, l, sensors = [], known = [], type = 'delayed')

  if (nargin < 2 || nargin > 5)
    print_usage ();
  endif

  if (! isa (sys, "lti"))
    error ("estim: first argument must be an LTI system");
  endif

  sys = ss (sys);     # needed to get stname from tf models
  [a, b, c, d, e, tsam] = dssdata (sys, []);
  [inn, stn, outn, ing, outg] = get (sys, "inname", "stname", "outname", "ingroup", "outgroup");

  if (isempty (sensors))
    sensors = 1 : rows (c);
  endif

  if (ischar (sensors))
    sensors = {sensors};
  endif
  if (ischar (known))
    known = {known};
  endif

  if (iscell (sensors))
    tmp = cellfun (@(x) __str2idx__ (outg, outn, x, "out"), sensors(:), "uniformoutput", false);
    sensors = vertcat (tmp{:});
  endif
  if (iscell (known))
    tmp = cellfun (@(x) __str2idx__ (ing, inn, x, "in"), known(:), "uniformoutput", false);
    known = vertcat (tmp{:});
  endif

  m = length (known);
  n = rows (a);
  p = length (sensors);

  if (rows (l) != n)
    error ("estim: system '%s' has %d states, but the state estimator gain '%s' has %d rows", ...
            inputname (1), n, inputname (2), rows (l));
  endif

  if (columns (l) != p)
    error ("estim: estimator gain '%s' has %d columns, but argument 'known' contains %d indices", ...
            inputname (2), columns (l), p);
  endif

  b = b(:, known);
  c = c(sensors, :);
  d = d(sensors, known);

  stname = __labels__ (stn, "xhat");
  outname = vertcat (__labels__ (outn(sensors(:)), "yhat"), stname);
  inname = vertcat (__labels__ (inn(known(:)), "u"), __labels__ (outn(sensors(:)), "y"));

  if strcmp (type, 'current')
    if isct (sys)
      warning ("kalman: ignoring 'type' parameter for continuous-time estimator\n");
      type = 'delayed';
    else
      if (cond (a) > 1e12)
        error ("estimd: system '%s' has noninvertibla system matrix", ...
               inputname (1));
      endif
    endif
  endif

  if strcmp (type, 'current')
    l = inv(a) * l;
    i_lc = eye(n,n) - l*c;
    f = a * i_lc;
    g = [ b-a*l*d, a*l ];
    h = [ c*i_lc
          i_lc ];
    j = [ -c*l*d, c*l;
            -l*d,   l ];
    ## k = e;
  else
    f = a - l*c;
    g = [b - l*d, l];
    h = [c; eye(n)];
    j = [d, zeros(p, p); zeros(n, m), zeros(n, p)];
    ## k = e;
  endif

  est = dss (f, g, h, j, e, tsam);
  est = set (est, "inname", inname, "stname", stname, "outname", outname);

endfunction

%!test
%! sys = ss (-2, 1, 1, 3);
%! est = estim (sys, 5);
%! [a, b, c, d] = ssdata (est);
%! m = [a, b; c, d];
%! m_exp = [-7, 5; 1, 0; 1, 0];
%! assert (m, m_exp, 1e-4);

%!test
%! sys = ss (-1, 2, 3, 4);
%! est = estim (sys, 5);
%! [a, b, c, d] = ssdata (est);
%! m = [a, b; c, d];
%! m_exp = [-16, 5; 3, 0; 1, 0];
%! assert (m, m_exp, 1e-4);

## The following test use the same system

%!shared A, B, C, D, L, sysd, x0, xo0, u, k, y, x
%! A = [ 0 1 0 ; 0 0 1 ; 0.5120 0.640 -0.800];
%! B = [ 0; 0; 1 ];
%! C = [ 0.1 0 0 ];
%! D = 1;
%! L = place (A',C',zeros(1,3))';   % Deadbeat
%! sysd = ss (A,B,C,D,1);
%! x0  = [ .1 .1 .1 ];
%! xo0 = [ 0 0 0 ];
%! k = 0:1:25;
%! u = 0.1*sin(0.5*k).*cos(0.4*k).^2;
%! [y,t,x] = lsim (sysd, u, k, x0);

%!test
%! estc = estim (sysd, L, [], 1, 'current');
%! [yoc,t,~] = lsim (estc, [u' y], k, xo0);
%! xoc = yoc(:,2:end);
%! ec = xoc - x;
%! assert (ec(3,:), zeros(1,3), 1e-4);  % ed already zero for k = 2

%!test
%! estd = estim (sysd, L, [], 1);
%! [yod,t,~] = lsim (estd, [u' y], k, xo0);
%! xod = yod(:,2:end);
%! ed = xod - x;
%! assert (ed(1,:), xo0 - x0, 1e-4);     % ec not corrected at k = 0
%! assert (ed(4,:), zeros(1,3), 1e-4);  % ec zero for k = 3