File: imp_invar.m

package info (click to toggle)
octave-control 4.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,924 kB
  • sloc: fortran: 122,524; cpp: 6,954; objc: 210; makefile: 40; xml: 33; sh: 3
file content (227 lines) | stat: -rw-r--r-- 6,633 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
## Copyright (C) 2009-2015   Lukas F. Reichlin
## Copyright (C) 2016 Douglas A. Stewart
## Copyright (C) 2024 Torsten Lilge
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.


## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{b_out}, @var{a_out}] =} imp_invar (@var{b}, @var{a}, @var{fs}, @var{tol})
## @deftypefnx {Function File} {[@var{b_out}, @var{a_out}] =} imp_invar (@var{b}, @var{a}, @var{fs})
## @deftypefnx {Function File} {[@var{b_out}, @var{a_out}] =} imp_invar (@var{b}, @var{a})
## @deftypefnx {Function File} {[@var{sys_out}] =} imp_invar (@var{b}, @var{a}, @var{fs}. @var{tol})
## @deftypefnx {Function File} {[@var{sys_out}] =} imp_invar (@var{sys_in}, @var{fs}, @var{tol})
## Converts analog filter with coefficients @var{b} and @var{a} and/or @var{sys_in} to digital,
## conserving impulse response.
##
## MIMO systems are only supported with @var{sys_in} as input argument.
##
## @strong{Inputs}
## @table @var
## @item b
## Numerator coefficients of continuous-time LTI system. 
## @item a
## Denominator coefficients of continuous-time LTI system.
## @item fs 
## Sampling frequency. If @var{fs} is not specified, or is an empty vector,
## it defaults to 1Hz.
## tol
## Tolerance of the internally used function minreal for canceling identical
## poles and zeros. If @var{tol} is not specified, it defaults to 0.0001 (0.1%).
## @item sys_in
## System definition of the continuous-time LTI system. This can also be
## a MIMO system.
## @end table
##
## @strong{Outputs}
## @table @var
## @item b_out
## Numerator coefficients of the discrete-time impulse invariant LTI system. 
## @item a_out
## Denominator coefficients of the discrete-time impulse invariant LTI system. 
## @item sys_out
## Discrete-time impulse invaraiant LTI system. If @var{sys_in} is given as
## state space representation, @var{sys_out} is also returned in state space,
## otherwise as transfer function.
## @end table
##
## @strong{Algorithm}
##
## The step equivalent discretization of G(s) (zoh) results in
## G_zoh(z) = (z-1)/z * Z@{G(s)/s@} where Z@{@} is the z-transformation.
## The transfer function of the impulse equivalent discretization
## is given by T*Z@{G(s)@}. Therefore, the zoh discretizaiton method for
## s*G(s) multipled by T*z/(z-1) leads to the desired result.
##
## @strong{Remark}
##
## For the impulse response of a discrete-time system, the input
## sequence @{1/T,0,0,0,...@} and not the unit impulse is considered.
## For this reason, the factor T is required for the impulse invaraint
## discretizaiton (see Algorithm).
##
## @seealso{c2d}
## @end deftypefn


function [bz az] = imp_invar (b , a , fs , tol = 1e-4)
  ## This funtion will accept both a
  ## sys variable as input and/or
  ## numerator, denominator as input.

  if (nargin < 1)
    print_usage;
  endif

  if (isa (b, "lti"))

    ## the input is an LTI object, therefore inputs are (sys,fs,tol)
    ## so b is sys, a is fs, and fs is tol
    ## in this case, MIMO systems are allowed
    if (exist("fs","var") != 0)
      tol = fs;
    else
      tol=0.0001;
    endif

    if (exist ("a") == 1)
      fs=a;
    else
      fs=1;
    endif

    ## lti system given in state space and nargout == 1?
    ## if yes, just return discretized system in state space
    if ( isa (b,"ss") && (nargout == 1) )
      bz = c2d (b, 1/fs, "imp");
      return;
    endif

    ## get all polynomials in a cell array
    [ny, nu] = size (b);
    [bcell, acell] = tfdata (b);

  else

    ## some internal functions call imp_invar with polynomials in cells
    if (iscell (b))
      b = b{1,1};
    endif
    if (iscell (a))
      a = a{1,1};
    endif

    ## the input is vectors
    if (! (ismatrix (b) && ismatrix (a))) || ...
        ((min (size (b)) != 1) && (min (size (a)) != 1))
      error ("imp_invar: first two arguments must be vectors\n");
    endif
    if (exist ("fs") == 0)
      fs = 1;
    endif

    ny = nu = 1;
    bcell = cell ();
    acell = cell ();
    bcell{1,1} = b;
    acell{1,1} = a;

  endif

  if (isempty (fs))
    fs = 1;
  endif

  if (isempty (tol))
    tol = 1e-4;
  endif

  T = 1/fs;

  bz = cell (ny,nu);
  az = bz;

  for iy = 1:ny
    for iu = 1:nu

      b = remove_leading_zeros (bcell{iy,iu});
      a = remove_leading_zeros (acell{iy,iu});

      if (length (b) >= length (a))
        error("Order numerator >= order denominator");
      endif

      ## Apply zoh method for s*G(s) and multiply the result by z/(z-1).
      b = conv (b, [1 0]);              # multiply by s
      G_zoh = c2d (tf (b,a), T, 'zoh'); # zoh method for s*G(s)

      [bzz,azz] = tfdata (G_zoh, 'v');  # get polynomials of result
      bzz = remove_leading_zeros (bzz);
      bzz = conv (bzz, [T 0]);          # multiply numerator by T*z
      azz = conv (azz, [1 -1]);         # multiply denominator by z-1

      sys1 = tf (bzz, azz, T);
      sys2 = minreal (sys1, tol); # Use this to remove the common roots.

      [bz{iy,iu}, az{iy,iu}] = tfdata (sys2, "v");

    endfor
  endfor

  if (nargout() < 2)
    bz = tf (bz, az, T);
  else
    if (ny*nu == 1)
      bz = bz{1,1};
      az = az{1,1};
    endif
  endif

endfunction


function x_clean = remove_leading_zeros (x)

  nonzero = find (x);
  if length (nonzero) == 0
    x_clean = 0;
  else
    x_clean = x(nonzero(1):end);
  endif

endfunction


## Tests
##
%!shared bz1, az1, bz2, az2, bz1_e, az1_e, bz2_e, az2_e
%!
%! s = tf ('s');
%! Gs = (s-2)*(s-1)*(s+5)/s/(s+1)/(s+2)^3/(s+3)/(s+4);
%! [b,a] = tfdata (Gs, 'v');
%! [bz1,az1] = imp_invar (Gs, 2);
%! [bz2,az2] = imp_invar (b, a, 5);
%!
%! bz1_e = 1/2*[-0.0000  0.0036 -0.0128  0.0039  0.0125 -0.0001 -0.0001  0.0000];
%! az1_e = [ 1.0000 -3.0686  3.7873 -2.4518  0.9020 -0.1886  0.0207 -0.0009];
%!
%! bz2_e = 1/5*[-0.0000  0.0007 -0.0007  -0.0025  0.0032 -0.0004 -0.0001  0.0000];
%! az2_e = [ 1.0000 -4.8278  9.8933 -11.1569  7.4787 -2.9798  0.6534 -0.0608];
%!
%!assert (az1, az1_e, 1e-4);
%!assert (bz1, bz1_e, 1e-4);
%!assert (az2, az2_e, 1e-4);
%!assert (bz2, bz2_e, 1e-4);