1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
## Copyright (C) 2009-2015 Lukas F. Reichlin
## Copyright (C) 2016 Douglas A. Stewart
## Copyright (C) 2024 Torsten Lilge
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{b_out}, @var{a_out}] =} imp_invar (@var{b}, @var{a}, @var{fs}, @var{tol})
## @deftypefnx {Function File} {[@var{b_out}, @var{a_out}] =} imp_invar (@var{b}, @var{a}, @var{fs})
## @deftypefnx {Function File} {[@var{b_out}, @var{a_out}] =} imp_invar (@var{b}, @var{a})
## @deftypefnx {Function File} {[@var{sys_out}] =} imp_invar (@var{b}, @var{a}, @var{fs}. @var{tol})
## @deftypefnx {Function File} {[@var{sys_out}] =} imp_invar (@var{sys_in}, @var{fs}, @var{tol})
## Converts analog filter with coefficients @var{b} and @var{a} and/or @var{sys_in} to digital,
## conserving impulse response.
##
## MIMO systems are only supported with @var{sys_in} as input argument.
##
## @strong{Inputs}
## @table @var
## @item b
## Numerator coefficients of continuous-time LTI system.
## @item a
## Denominator coefficients of continuous-time LTI system.
## @item fs
## Sampling frequency. If @var{fs} is not specified, or is an empty vector,
## it defaults to 1Hz.
## tol
## Tolerance of the internally used function minreal for canceling identical
## poles and zeros. If @var{tol} is not specified, it defaults to 0.0001 (0.1%).
## @item sys_in
## System definition of the continuous-time LTI system. This can also be
## a MIMO system.
## @end table
##
## @strong{Outputs}
## @table @var
## @item b_out
## Numerator coefficients of the discrete-time impulse invariant LTI system.
## @item a_out
## Denominator coefficients of the discrete-time impulse invariant LTI system.
## @item sys_out
## Discrete-time impulse invaraiant LTI system. If @var{sys_in} is given as
## state space representation, @var{sys_out} is also returned in state space,
## otherwise as transfer function.
## @end table
##
## @strong{Algorithm}
##
## The step equivalent discretization of G(s) (zoh) results in
## G_zoh(z) = (z-1)/z * Z@{G(s)/s@} where Z@{@} is the z-transformation.
## The transfer function of the impulse equivalent discretization
## is given by T*Z@{G(s)@}. Therefore, the zoh discretizaiton method for
## s*G(s) multipled by T*z/(z-1) leads to the desired result.
##
## @strong{Remark}
##
## For the impulse response of a discrete-time system, the input
## sequence @{1/T,0,0,0,...@} and not the unit impulse is considered.
## For this reason, the factor T is required for the impulse invaraint
## discretizaiton (see Algorithm).
##
## @seealso{c2d}
## @end deftypefn
function [bz az] = imp_invar (b , a , fs , tol = 1e-4)
## This funtion will accept both a
## sys variable as input and/or
## numerator, denominator as input.
if (nargin < 1)
print_usage;
endif
if (isa (b, "lti"))
## the input is an LTI object, therefore inputs are (sys,fs,tol)
## so b is sys, a is fs, and fs is tol
## in this case, MIMO systems are allowed
if (exist("fs","var") != 0)
tol = fs;
else
tol=0.0001;
endif
if (exist ("a") == 1)
fs=a;
else
fs=1;
endif
## lti system given in state space and nargout == 1?
## if yes, just return discretized system in state space
if ( isa (b,"ss") && (nargout == 1) )
bz = c2d (b, 1/fs, "imp");
return;
endif
## get all polynomials in a cell array
[ny, nu] = size (b);
[bcell, acell] = tfdata (b);
else
## some internal functions call imp_invar with polynomials in cells
if (iscell (b))
b = b{1,1};
endif
if (iscell (a))
a = a{1,1};
endif
## the input is vectors
if (! (ismatrix (b) && ismatrix (a))) || ...
((min (size (b)) != 1) && (min (size (a)) != 1))
error ("imp_invar: first two arguments must be vectors\n");
endif
if (exist ("fs") == 0)
fs = 1;
endif
ny = nu = 1;
bcell = cell ();
acell = cell ();
bcell{1,1} = b;
acell{1,1} = a;
endif
if (isempty (fs))
fs = 1;
endif
if (isempty (tol))
tol = 1e-4;
endif
T = 1/fs;
bz = cell (ny,nu);
az = bz;
for iy = 1:ny
for iu = 1:nu
b = remove_leading_zeros (bcell{iy,iu});
a = remove_leading_zeros (acell{iy,iu});
if (length (b) >= length (a))
error("Order numerator >= order denominator");
endif
## Apply zoh method for s*G(s) and multiply the result by z/(z-1).
b = conv (b, [1 0]); # multiply by s
G_zoh = c2d (tf (b,a), T, 'zoh'); # zoh method for s*G(s)
[bzz,azz] = tfdata (G_zoh, 'v'); # get polynomials of result
bzz = remove_leading_zeros (bzz);
bzz = conv (bzz, [T 0]); # multiply numerator by T*z
azz = conv (azz, [1 -1]); # multiply denominator by z-1
sys1 = tf (bzz, azz, T);
sys2 = minreal (sys1, tol); # Use this to remove the common roots.
[bz{iy,iu}, az{iy,iu}] = tfdata (sys2, "v");
endfor
endfor
if (nargout() < 2)
bz = tf (bz, az, T);
else
if (ny*nu == 1)
bz = bz{1,1};
az = az{1,1};
endif
endif
endfunction
function x_clean = remove_leading_zeros (x)
nonzero = find (x);
if length (nonzero) == 0
x_clean = 0;
else
x_clean = x(nonzero(1):end);
endif
endfunction
## Tests
##
%!shared bz1, az1, bz2, az2, bz1_e, az1_e, bz2_e, az2_e
%!
%! s = tf ('s');
%! Gs = (s-2)*(s-1)*(s+5)/s/(s+1)/(s+2)^3/(s+3)/(s+4);
%! [b,a] = tfdata (Gs, 'v');
%! [bz1,az1] = imp_invar (Gs, 2);
%! [bz2,az2] = imp_invar (b, a, 5);
%!
%! bz1_e = 1/2*[-0.0000 0.0036 -0.0128 0.0039 0.0125 -0.0001 -0.0001 0.0000];
%! az1_e = [ 1.0000 -3.0686 3.7873 -2.4518 0.9020 -0.1886 0.0207 -0.0009];
%!
%! bz2_e = 1/5*[-0.0000 0.0007 -0.0007 -0.0025 0.0032 -0.0004 -0.0001 0.0000];
%! az2_e = [ 1.0000 -4.8278 9.8933 -11.1569 7.4787 -2.9798 0.6534 -0.0608];
%!
%!assert (az1, az1_e, 1e-4);
%!assert (bz1, bz1_e, 1e-4);
%!assert (az2, az2_e, 1e-4);
%!assert (bz2, bz2_e, 1e-4);
|