File: kalman.m

package info (click to toggle)
octave-control 4.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,924 kB
  • sloc: fortran: 122,524; cpp: 6,954; objc: 210; makefile: 40; xml: 33; sh: 3
file content (230 lines) | stat: -rw-r--r-- 7,400 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
## Copyright (C) 2009-2016   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{S})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{[]}, @var{sensors}, @var{known})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{S}, @var{sensors}, @var{known})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{[]}, @var{sensors}, @var{known}, @var{type})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{S}, @var{sensors}, @var{known}, @var{type})
## Design Kalman estimator for @acronym{LTI} systems.
##
## @strong{Inputs}
## @table @var
## @item sys
## Nominal plant model.
## @item q
## Covariance of white process noise.
## @item r
## Covariance of white measurement noise.
## @item s
## Optional cross term covariance. Default value is 0.
## @item sensors
## Indices of measured output signals y from @var{sys}. If omitted or empty, all outputs are measured.
## @item known
## Indices of known input signals u (deterministic) to @var{sys}.  All other inputs to @var{sys}
## are assumed stochastic. If argument @var{known} is omitted or empty, the first m-l inputs to @var{sys}
## are known, where m is the total number of inputs to @var{sys} and l is the size of the quadratic
## matrix @var{Q}.
## @item type
## Type of the estimator for discrete-time systems. If set to 'delayed' the current
## estimation is based on y(k-1), if set to 'current' the current estimation is
## based on the lates mesaruement y(k). If omitted, the 'delayed' version is created.
## @end table
##
## @strong{Outputs}
## @table @var
## @item est
## State-space model of the Kalman estimator.
## @item g
## Estimator gain.
## @item x
## Solution of the Riccati equation.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##                                  u  +-------+         ^
##       +---------------------------->|       |-------> y
##       |    +-------+     +       y  |  est  |         ^
## u ----+--->|       |----->(+)------>|       |-------> x
##            |  sys  |       ^ +      +-------+
## w -------->|       |       |
##            +-------+       | v
##
## Q = cov (w, w')     R = cov (v, v')     S = cov (w, v')
## @end group
## @end example
##
## @seealso{care, dare, estim, lqr}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: November 2009
## Version: 0.3

function [est, K, X] = kalman (sys, Q, R, varargin)

  if (nargin < 3 || nargin > 7 || ! isa (sys, "lti"))
    print_usage ();
  endif

  ## System in state space
  [A, B, C, D, E] = dssdata (sys, []);

  ## Optional parameters:
  ## The new default for known inputs (deterministic) are not
  ## backward compatible because previously, all inputs are
  ## assumed to be stochastic if is empty. However, this would
  ## result in an error if the number if the number of stochastic
  ## inputs would not match the dimension of Q. For all valid cases
  ## the new version is compatibel to the old one.
  S = [];
  sensors = 1 : rows (C);
  deterministic = 1 : columns (B) - size (Q,1);   # first inputs deterministic
  type = 'delayed';

  varidxoff = 3;        # offset no. of variable and fixed input arguments
  argidx = varidxoff;   # index of last input argument

  if (nargin > argidx++)
    S = varargin{argidx-varidxoff};
    if (nargin > argidx++)
      if (! isempty (varargin{argidx-varidxoff}))
        sensors = varargin{argidx-varidxoff};
      endif
      if (nargin > argidx++)
        if (! isempty (varargin{argidx-varidxoff}))
          deterministic = varargin{argidx-varidxoff};
        endif
        if (nargin > argidx++)
          if (isct (sys))
            warning ("kalman: ignoring 'type' parameter for continuous-time estimator\n");
          else
            type = varargin{argidx-varidxoff};
          endif
        endif
      endif
    endif
  endif

  m   = columns (B);
  m_d = length (deterministic);
  m_s = size (Q,1);
  p = length (sensors);
  p_s = size (R,1);

  ## plausibility check for parameters
  if (! issquare (Q))
    error ("kalman: second argument Q must be square\n");
  endif
  if (! issquare (R))
    error ("kalman: third argument R must be square\n");
  endif
  if (m_s != m - m_d)
    error ("kalman: number of stochastic inputs (%d) does not match size %d of Q\n",...
           m - m_d, m_s);
  endif
  if (p_s != p)
    error ("kalman: size %d of measurment noise does not match size %d of R\n",...
           p, p_s);
  endif
  if ((! isempty (S)) && (size (S) != [m_s,p_s]))
    error ("kalman: size [%d,%d] of S does not match size %d of Q and %d of R\n",...
           size(S,1), size(S,2), m_s, p_s);
  endif

  ## matrices for Kalman filter design
  stochastic = setdiff (1 : columns (B), deterministic);

  C = C(sensors, :);
  G = B(:, stochastic);
  H = D(sensors, stochastic);

  if (isempty (S))
    Rbar = R + H*Q*H.';
    Sbar = G * Q*H.';
  else
    Rbar = R + H*Q*H.'+ H*S + S.'*H.';
    Sbar = G * (Q*H.' + S);
  endif

  if (isct (sys))
    [X, L, K] = care (A.', C.', G*Q*G.', Rbar, Sbar, E.');
  else
    [X, L, K] = dare (A.', C.', G*Q*G.', Rbar, Sbar, E.');
  endif

  K = K.';
  est = estim (sys, K, sensors, deterministic, type);

endfunction

%!test
%! sys = ss (-2, 1, 1, 3);
%! [est, g, x] = kalman (sys, 1, 1, 1);
%! [a, b, c, d] = ssdata (est);
%! m = [a, b; c, d];
%! m_exp = [-2.25, 0.25; 1, 0; 1, 0];
%! g_exp = 0.25;
%! x_exp = 0;
%! assert (m, m_exp, 1e-2);
%! assert (g, g_exp, 1e-2);
%! assert (x, x_exp, 1e-2);

%!shared n, nw, A, B, C, D, Bw, Dw, sys, Q, R, N, Pinf, K
%! n = 3;
%! nw = 2;
%!
%! A = [1.1269   -0.4940    0.1129
%!      1.0000         0         0
%!           0    1.0000         0];
%! B = [-0.3832
%!       0.5919
%!       0.5191];
%! Bw = rand(n,nw);
%! B = [B Bw];
%! C = [1 0 0];
%! D = [1];
%! Dw = zeros(1,nw);
%! D = [D Dw];
%! sys = ss(A,B,C,D,1);
%! Q = eye(nw,nw);
%! R = 1;
%! N = [];
%! PP = eye(3,3);
%! # asymptotic filter equations
%! for i = 1:10
%!   Pinf = A*PP*A' + Bw*Q*Bw';
%!   K  = Pinf*C'*inv(C*Pinf*C'+R);
%!   PP =  (eye(3,3)-K*C)*Pinf;
%! endfor;

%!test
%! [kalmf,L,P] = kalman(sys,Q,R,N,1,1);
%! assert (Pinf, P, 4e-4);
%! assert (inv(A)*L, K, 2e-4);
%! assert (kalmf.a, A-L*C, 1e-4);

%!test
%! [kalmfc,Lc,Pc] = kalman(sys,Q,R,N,1,1,'current');
%! assert (Pinf, Pc, 4e-4);
%! assert (inv(A)*Lc, K, 2e-4);
%! assert (kalmfc.a, A-A*K*C, 1e-4);