1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
## Copyright (C) 2009-2016 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{S})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{[]}, @var{sensors}, @var{known})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{S}, @var{sensors}, @var{known})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{[]}, @var{sensors}, @var{known}, @var{type})
## @deftypefnx {Function File} {[@var{est}, @var{g}, @var{x}] =} kalman (@var{sys}, @var{Q}, @var{R}, @var{S}, @var{sensors}, @var{known}, @var{type})
## Design Kalman estimator for @acronym{LTI} systems.
##
## @strong{Inputs}
## @table @var
## @item sys
## Nominal plant model.
## @item q
## Covariance of white process noise.
## @item r
## Covariance of white measurement noise.
## @item s
## Optional cross term covariance. Default value is 0.
## @item sensors
## Indices of measured output signals y from @var{sys}. If omitted or empty, all outputs are measured.
## @item known
## Indices of known input signals u (deterministic) to @var{sys}. All other inputs to @var{sys}
## are assumed stochastic. If argument @var{known} is omitted or empty, the first m-l inputs to @var{sys}
## are known, where m is the total number of inputs to @var{sys} and l is the size of the quadratic
## matrix @var{Q}.
## @item type
## Type of the estimator for discrete-time systems. If set to 'delayed' the current
## estimation is based on y(k-1), if set to 'current' the current estimation is
## based on the lates mesaruement y(k). If omitted, the 'delayed' version is created.
## @end table
##
## @strong{Outputs}
## @table @var
## @item est
## State-space model of the Kalman estimator.
## @item g
## Estimator gain.
## @item x
## Solution of the Riccati equation.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
## u +-------+ ^
## +---------------------------->| |-------> y
## | +-------+ + y | est | ^
## u ----+--->| |----->(+)------>| |-------> x
## | sys | ^ + +-------+
## w -------->| | |
## +-------+ | v
##
## Q = cov (w, w') R = cov (v, v') S = cov (w, v')
## @end group
## @end example
##
## @seealso{care, dare, estim, lqr}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: November 2009
## Version: 0.3
function [est, K, X] = kalman (sys, Q, R, varargin)
if (nargin < 3 || nargin > 7 || ! isa (sys, "lti"))
print_usage ();
endif
## System in state space
[A, B, C, D, E] = dssdata (sys, []);
## Optional parameters:
## The new default for known inputs (deterministic) are not
## backward compatible because previously, all inputs are
## assumed to be stochastic if is empty. However, this would
## result in an error if the number if the number of stochastic
## inputs would not match the dimension of Q. For all valid cases
## the new version is compatibel to the old one.
S = [];
sensors = 1 : rows (C);
deterministic = 1 : columns (B) - size (Q,1); # first inputs deterministic
type = 'delayed';
varidxoff = 3; # offset no. of variable and fixed input arguments
argidx = varidxoff; # index of last input argument
if (nargin > argidx++)
S = varargin{argidx-varidxoff};
if (nargin > argidx++)
if (! isempty (varargin{argidx-varidxoff}))
sensors = varargin{argidx-varidxoff};
endif
if (nargin > argidx++)
if (! isempty (varargin{argidx-varidxoff}))
deterministic = varargin{argidx-varidxoff};
endif
if (nargin > argidx++)
if (isct (sys))
warning ("kalman: ignoring 'type' parameter for continuous-time estimator\n");
else
type = varargin{argidx-varidxoff};
endif
endif
endif
endif
endif
m = columns (B);
m_d = length (deterministic);
m_s = size (Q,1);
p = length (sensors);
p_s = size (R,1);
## plausibility check for parameters
if (! issquare (Q))
error ("kalman: second argument Q must be square\n");
endif
if (! issquare (R))
error ("kalman: third argument R must be square\n");
endif
if (m_s != m - m_d)
error ("kalman: number of stochastic inputs (%d) does not match size %d of Q\n",...
m - m_d, m_s);
endif
if (p_s != p)
error ("kalman: size %d of measurment noise does not match size %d of R\n",...
p, p_s);
endif
if ((! isempty (S)) && (size (S) != [m_s,p_s]))
error ("kalman: size [%d,%d] of S does not match size %d of Q and %d of R\n",...
size(S,1), size(S,2), m_s, p_s);
endif
## matrices for Kalman filter design
stochastic = setdiff (1 : columns (B), deterministic);
C = C(sensors, :);
G = B(:, stochastic);
H = D(sensors, stochastic);
if (isempty (S))
Rbar = R + H*Q*H.';
Sbar = G * Q*H.';
else
Rbar = R + H*Q*H.'+ H*S + S.'*H.';
Sbar = G * (Q*H.' + S);
endif
if (isct (sys))
[X, L, K] = care (A.', C.', G*Q*G.', Rbar, Sbar, E.');
else
[X, L, K] = dare (A.', C.', G*Q*G.', Rbar, Sbar, E.');
endif
K = K.';
est = estim (sys, K, sensors, deterministic, type);
endfunction
%!test
%! sys = ss (-2, 1, 1, 3);
%! [est, g, x] = kalman (sys, 1, 1, 1);
%! [a, b, c, d] = ssdata (est);
%! m = [a, b; c, d];
%! m_exp = [-2.25, 0.25; 1, 0; 1, 0];
%! g_exp = 0.25;
%! x_exp = 0;
%! assert (m, m_exp, 1e-2);
%! assert (g, g_exp, 1e-2);
%! assert (x, x_exp, 1e-2);
%!shared n, nw, A, B, C, D, Bw, Dw, sys, Q, R, N, Pinf, K
%! n = 3;
%! nw = 2;
%!
%! A = [1.1269 -0.4940 0.1129
%! 1.0000 0 0
%! 0 1.0000 0];
%! B = [-0.3832
%! 0.5919
%! 0.5191];
%! Bw = rand(n,nw);
%! B = [B Bw];
%! C = [1 0 0];
%! D = [1];
%! Dw = zeros(1,nw);
%! D = [D Dw];
%! sys = ss(A,B,C,D,1);
%! Q = eye(nw,nw);
%! R = 1;
%! N = [];
%! PP = eye(3,3);
%! # asymptotic filter equations
%! for i = 1:10
%! Pinf = A*PP*A' + Bw*Q*Bw';
%! K = Pinf*C'*inv(C*Pinf*C'+R);
%! PP = (eye(3,3)-K*C)*Pinf;
%! endfor;
%!test
%! [kalmf,L,P] = kalman(sys,Q,R,N,1,1);
%! assert (Pinf, P, 4e-4);
%! assert (inv(A)*L, K, 2e-4);
%! assert (kalmf.a, A-L*C, 1e-4);
%!test
%! [kalmfc,Lc,Pc] = kalman(sys,Q,R,N,1,1,'current');
%! assert (Pinf, Pc, 4e-4);
%! assert (inv(A)*Lc, K, 2e-4);
%! assert (kalmfc.a, A-A*K*C, 1e-4);
|