1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
## Copyright (C) 2008 Jonathan Stickel <jonathan.stickel@nrel.gov>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
##@deftypefn {Function File} {[@var{yhat}, @var{v}] =} rgdtsmcore (@var{x}, @var{y}, @var{d}, @var{lambda}, [@var{options}])
##
## Smooths @var{y} vs. @var{x} values by Tikhonov regularization.
## Although this function can be used directly, the more feature rich
## function "regdatasmooth" should be used instead. In addition to
## @var{x} and @var{y}, required input includes the smoothing derivative
## @var{d} and the regularization parameter @var{lambda}. The smooth
## y-values are returned as @var{yhat}. The generalized cross
## validation variance @var{v} may also be returned.
##
## Note: the options have changed!
## Currently supported input options are (multiple options are allowed):
##
## @table @code
## @item "xhat", @var{vector}
## A vector of x-values to use for the smooth curve; must be
## monotonically increasing and must at least span the data
## @item "weights", @var{vector}
## A vector of weighting values for fitting each point in the data.
## @item "relative"
## use relative differences for the goodnes of fit term. Conflicts
## with the "weights" option.
## @item "midpointrule"
## use the midpoint rule for the integration terms rather than a direct
## sum; this option conflicts with the option "xhat"
## @end table
##
## References: Anal. Chem. (2003) 75, 3631; AIChE J. (2006) 52, 325
## @seealso{regdatasmooth}
## @end deftypefn
function [yhat, v] = rgdtsmcore (x, y, d, lambda, varargin)
if (nargin < 4)
print_usage;
endif
## Defaults if not provided
xhatprov = 0;
xhat = x;
weights = 0;
relative = 0;
midpr = 0;
## parse the provided options
if ( length(varargin) )
for i = 1:length(varargin)
arg = varargin{i};
if ischar(arg)
switch arg
case "xhat"
xhatprov = 1;
xhat = varargin{i+1};
case "weights"
weights = 1;
weightv = varargin{i+1};
case "relative"
relative = 1;
case "midpointrule"
midpr = 1;
otherwise
printf("Option '%s' is not implemented;\n", arg)
endswitch
endif
endfor
endif
if (xhatprov && midpr)
warning("midpointrule is currently not used if xhat is provided (since x,y may be scattered)")
midpr = 0;
endif
if (weights && relative)
warning("relative differences is not used if a weighting vector is provided")
endif
N = length(x);
Nhat = length(xhat);
## test that xhat is increasing
if !all(diff(xhat)>0)
if xhatprov
error("xhat must be monotonically increasing")
else
error("x must be monotonically increasing if xhat is not provided")
endif
endif
## test that xhat spans x
if ( min(x) < min(xhat) || max(xhat) < max(x) )
error("xhat must at least span the data")
endif
## construct M, D
M = speye(Nhat);
idx = interp1(xhat,1:Nhat,x,"nearest"); # works for unequally spaced xhat
M = M(idx,:);
D = ddmat(xhat,d);
## construct "weighting" matrices W and U
if (weights)
## use arbitrary weighting as provided
W = diag(weightv);
elseif (relative)
## use relative differences
Yinv = sparse(diag(1./y));
W = Yinv^2;
else
W = speye(N);
endif
## use midpoint rule integration (rather than simple sums)
if (midpr)
Bhat = sparse(diag(-ones(N-1,1),-1)) + sparse(diag(ones(N-1,1),1));
Bhat(1,1) = -1;
Bhat(N,N) = 1;
B = 1/2*sparse(diag(Bhat*x));
if ( floor(d/2) == d/2 ) # test if d is even
dh = d/2;
Btilda = B(dh+1:N-dh,dh+1:N-dh);
else # d is odd
dh = ceil(d/2);
Btilda = B(dh:N-dh,dh:N-dh);
endif
W = W*B;
U = Btilda;
else
## W = W*speye(Nhat);
U = speye(Nhat-d);
endif
## Smoothing
delta = trace(D'*D)/Nhat^(2+d); # using "relative" or other weighting affects this!
yhat = (M'*W*M + lambda*delta^(-1)*D'*U*D) \ M'*W*y;
#[R,P,S] = splchol(M'*W*M + lambda*delta^(-1)*D'*U*D);
#yhat = S*(R'\(R\(S'*M'*W*y)));
## Computation of hat diagonal and cross-validation
if (nargout > 1)
## from AIChE J. (2006) 52, 325
## note: chol factorization does not help speed up the computation of H;
## should implement Eiler's partial H computation if many point smoothing by GCV is needed
##H = M*(S*(R'\(R\(S'*M'*W))));
H = M*((M'*W*M + lambda*delta^(-1)*D'*U*D)\M'*W);
## note: this is variance, squared of the standard error that Eilers uses
v = (M*yhat - y)'*(M*yhat - y)/N / (1 - trace(H)/N)^2;
endif
## test mapping
##figure(5)
##plot(x,y,'o',x,M*yhat,'x')
endfunction
|