File: mle_estimate.m

package info (click to toggle)
octave-econometrics 1%3A1.0.8-6
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 476 kB
  • sloc: makefile: 69; cpp: 32; sh: 4
file content (73 lines) | stat: -rw-r--r-- 2,925 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
## Copyright (C) 2003,2004,2005  Michael Creel <michael.creel@uab.es>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.

# usage:
# [theta, obj_value, conv, iters] = mle_estimate(theta, data, model, modelargs, control, nslaves)
#
# inputs:
# theta: column vector of model parameters
# data: data matrix
# model: name of function that computes log-likelihood
# modelargs: (cell) additional inputs needed by model. May be empty ("")
# control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
# nslaves: (optional) number of slaves if executed in parallel (requires MPITB)
#
# outputs:
# theta: ML estimated value of parameters
# obj_value: the value of the log likelihood function at ML estimate
# conv: return code from bfgsmin (1 means success, see bfgsmin for details)
# iters: number of BFGS iteration used
#
# please see mle_example.m for examples of how to use this
function [theta, obj_value, convergence, iters] = mle_estimate(theta, data, model, modelargs, control, nslaves)


	if nargin < 3
		error("mle_estimate: 3 arguments required");
	endif

	if nargin < 4 modelargs = {}; endif # create placeholder if not used
	if !iscell(modelargs) modelargs = {}; endif # default controls if receive placeholder
	if nargin < 5 control = {-1,0,1,1}; endif # default controls and method
	if !iscell(control) control = {-1,0,1,1}; endif # default controls if receive placeholder
	if nargin < 6 nslaves = 0; endif
	if nslaves > 0
		global NSLAVES PARALLEL NEWORLD TAG;
		LAM_Init(nslaves);
		# Send the data to all nodes
		NumCmds_Send({"data", "model", "modelargs"}, {data, model, modelargs});
	endif

	# bfgs or sa?
	if (size(control,1)*size(control,2) == 0) # use default bfgs if no control
		control = {Inf,0,1,1};
		method = "bfgs";
	elseif (size(control,1)*size(control,2) < 11)
		method = "bfgs";
	else method = "sa";
	endif

	# do estimation using either bfgsmin or samin
	if strcmp(method, "bfgs")
	  [theta, obj_value, convergence, iters] = bfgsmin("mle_obj", {theta, data, model, modelargs, nslaves}, control);
	elseif strcmp(method, "sa")
	  [theta, obj_value, convergence] = samin("mle_obj", {theta, data, model, modelargs, nslaves}, control);
	endif

	if nslaves > 0
		LAM_Finalize;
	endif # cleanup
	obj_value = - obj_value; # recover from minimization rather than maximization
endfunction