1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
# Copyright (C) 2003,2004,2005 Michael Creel <michael.creel@uab.es>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; If not, see <http://www.gnu.org/licenses/>.
# usage: [theta, V, obj_value, infocrit] =
# mle_results(theta, data, model, modelargs, names, title, unscale, control)
#
# inputs:
# theta: column vector of model parameters
# data: data matrix
# model: name of function that computes log-likelihood
# modelargs: (cell) additional inputs needed by model. May be empty ("")
# names: vector of parameter names, e.g., use names = char("param1", "param2");
# title: string, describes model estimated
# unscale: (optional) cell that holds means and std. dev. of data (see scale_data)
# control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
# nslaves: (optional) number of slaves if executed in parallel (requires MPITB)
#
# outputs:
# theta: ML estimated value of parameters
# obj_value: the value of the log likelihood function at ML estimate
# conv: return code from bfgsmin (1 means success, see bfgsmin for details)
# iters: number of BFGS iteration used
##
## Please see mle_example for information on how to use this
# report results
function [theta, V, obj_value, infocrit] = mle_results(theta, data, model, modelargs, names, mletitle, unscale, control = {-1}, nslaves = 0)
if nargin < 6 mletitle = "Generic MLE title"; endif
[theta, obj_value, convergence] = mle_estimate(theta, data, model, modelargs, control, nslaves);
V = mle_variance(theta, data, model, modelargs);
# unscale results if argument has been passed
# this puts coefficients into scale corresponding to the original modelargs
if (nargin > 6)
if iscell(unscale) # don't try it if unscale is simply a placeholder
[theta, V] = unscale_parameters(theta, V, unscale);
endif
endif
[theta, V] = delta_method("parameterize", theta, {data, model, modelargs}, V);
n = rows(data);
k = rows(V);
se = sqrt(diag(V));
if convergence == 1 convergence="Normal convergence";
elseif convergence == 2 convergence="No convergence";
elseif convergence == -1 convergence = "Max. iters. exceeded";
endif
printf("\n\n******************************************************\n");
disp(mletitle);
printf("\nMLE Estimation Results\n");
printf("BFGS convergence: %s\n\n", convergence);
printf("Average Log-L: %f\n", obj_value);
printf("Observations: %d\n", n);
a =[theta, se, theta./se, 2 - 2*normcdf(abs(theta ./ se))];
clabels = char("estimate", "st. err", "t-stat", "p-value");
printf("\n");
if names !=0 prettyprint(a, names, clabels);
else prettyprint_c(a, clabels);
endif
printf("\nInformation Criteria \n");
caic = -2*n*obj_value + rows(theta)*(log(n)+1);
bic = -2*n*obj_value + rows(theta)*log(n);
aic = -2*n*obj_value + 2*rows(theta);
infocrit = [caic, bic, aic];
printf("CAIC : %8.4f Avg. CAIC: %8.4f\n", caic, caic/n);
printf(" BIC : %8.4f Avg. BIC: %8.4f\n", bic, bic/n);
printf(" AIC : %8.4f Avg. AIC: %8.4f\n", aic, aic/n);
printf("******************************************************\n");
endfunction
|