File: mle_obj.m

package info (click to toggle)
octave-econometrics 1%3A1.1.2-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 280 kB
  • sloc: cpp: 32; makefile: 9
file content (62 lines) | stat: -rw-r--r-- 2,218 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
## Copyright (C) 2003, 2004, 2005 Michael Creel <michael.creel@uab.es>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## usage: [obj_value, score] = mle_obj(theta, data, model, modelargs, nslaves)
##
## Returns the average log-likelihood for a specified model
## This is for internal use by mle_estimate

function [obj_value, score] = mle_obj(theta, data, model, modelargs, nslaves = 0)

	n = rows(data);   
	
	if nslaves > 0
		global NSLAVES PARALLEL NEWORLD NSLAVES TAG;

		nn = floor(n/(NSLAVES + 1)); # number of obsns per slave

		# The command that the slave nodes will execute
    		cmd=['contrib = mle_obj_nodes(theta, data, model, modelargs, nn); ',...	
        		'MPI_Send(contrib,0,TAG,NEWORLD);'];	

		# send items to slaves
		NumCmds_Send({"theta", "nn", "cmd"}, {theta, nn, cmd});

		# evaluate last block on master while slaves are busy
  		obj_value = mle_obj_nodes(theta, data, model, modelargs, nn);

		# collect slaves' results
		contrib = 0.0; # must be initialized to use MPI_Recv
  		for i = 1:NSLAVES
			MPI_Recv(contrib,i,TAG,NEWORLD);
			obj_value = obj_value + contrib;
		endfor

		# compute the average
  		obj_value = - obj_value / n;
  		score = "na"; # fix this later to allow analytic score in parallel
		
	else # serial version
		[contribs, score] = feval(model, theta, data, modelargs);
		obj_value = - mean(contribs);
		if isnumeric(score) score = - mean(score)'; endif # model passes "na" when score not available
	endif

	# let's bullet-proof this in case the model goes nuts
	if (((abs(obj_value) == Inf)) || (isnan(obj_value)))
		obj_value = realmax/10;
	endif	    

endfunction