1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  
     | 
    
      ## Copyright (C) 2003, 2004, 2005 Michael Creel <michael.creel@uab.es>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## usage: [theta, V, obj_value] =
##  gmm_results(theta, data, weight, moments, momentargs, names, title, unscale, control, nslaves)
##
## inputs:
##      theta: column vector initial parameters
##       data: data matrix
##     weight: the GMM weight matrix
##    moments: name of function computes the moments
##             (should return nXg matrix of contributions)
## momentargs: (cell) additional inputs needed to compute moments.
##             May be empty ("")
##      names: vector of parameter names
##             e.g., names = char("param1", "param2");
##      title: string, describes model estimated
##    unscale: (optional) cell that holds means and std. dev. of data
##             (see scale_data)
##    control: (optional) BFGS or SA controls (see bfgsmin and samin). May be empty ("").
##    nslaves: (optional) number of slaves if executed in parallel
##             (requires MPITB)
##
## outputs:
## theta: GMM estimated parameters
## V: estimate of covariance of parameters. Assumes the weight matrix
##    is optimal (inverse of covariance of moments)
## obj_value: the value of the GMM objective function
##
## please type "gmm_example" while in octave to see an example
function [theta, V, obj_value] = gmm_results(theta, data, weight, moments, momentargs, names, title, unscale, control, nslaves)
  if nargin < 10 nslaves = 0; endif # serial by default
	if nargin < 9
		[theta, obj_value, convergence] = gmm_estimate(theta, data, weight, moments, momentargs, "", nslaves);
	else
		[theta, obj_value, convergence] = gmm_estimate(theta, data, weight, moments, momentargs, control, nslaves);
	endif
	m = feval(moments, theta, data, momentargs); # find out how many obsns. we have
	n = rows(m);
	if convergence == 1
		convergence="Normal convergence";
	else
		convergence="No convergence";
	endif
	V = gmm_variance(theta, data, weight, moments, momentargs);
	# unscale results if argument has been passed
	# this puts coefficients into scale corresponding to the original data
	if nargin > 7
		if iscell(unscale)
			[theta, V] = unscale_parameters(theta, V, unscale);
		endif
	endif
	[theta, V] = delta_method("parameterize", theta, {data, moments, momentargs}, V);
	k = rows(theta);
	se = sqrt(diag(V));
	printf("\n\n******************************************************\n");
	disp(title);
	printf("\nGMM Estimation Results\n");
	printf("BFGS convergence: %s\n", convergence);
	printf("\nObjective function value: %f\n", obj_value);
	printf("Observations: %d\n", n);
	junk = "X^2 test";
	df = n - k;
	if df > 0
		clabels = char("Value","df","p-value");
		a = [n*obj_value, df, 1 - chi2cdf(n*obj_value, df)];
		printf("\n");
		prettyprint(a, junk, clabels);
	else
		disp("\nExactly identified, no spec. test");
	end;
	# results for parameters
	a =[theta, se, theta./se, 2 - 2*normcdf(abs(theta ./ se))];
	clabels = char("estimate", "st. err", "t-stat", "p-value");
	printf("\n");
	prettyprint(a, names, clabels);
	printf("******************************************************\n");
endfunction
 
     |