1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
/*
Copyright (C) 2003 Motorola Inc
Copyright (C) 2003 Laurent Mazet
Copyright (C) 2003 David Bateman
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
In addition to the terms of the GPL, you are permitted to link
this program with any Open Source program, as defined by the
Open Source Initiative (www.opensource.org)
*/
#include <cmath>
#include <octave/config.h>
#include <octave/oct.h>
#include "ffft.h"
/*
*---------------------------------------------------------------------------*
| Module: FFT Radix4 |
| |
| Description: contains five radix4 - butterfly functions, and a function |
| performing the radix4 FFT. |
| All the butterflies have the following structure: |
| |
| u ____ ____ u <-- [(u+y)+(x+z)]W0 |
| \ / |
| \ / |
| x _______\ /_______ x <-- [(u-y)-j(x-z)]Wk |
| \/ |
| /\ |
| y ______ / \ ______ y <-- [(u+y)-(x+z)]W2k |
| / \ |
| / \ |
| z ___ / \ ___ z <-- [(u-y)+j(x-z)]W3k |
| |
*---------------------------------------------------------------------------*
*/
template <class S, class C, class CV>
inline void Fft<S,C,CV>::corebutterfly (C &u, C &x, C &y, C &z) {
apc = reshape(u) + reshape(y);
amc = reshape(u) - reshape(y);
bpd = reshape(x) + reshape(z);
bmd = reshape(x) - reshape(z);
}
template <class S, class C, class CV>
void Fft<S,C,CV>::r4butterfly0 (C &u, C &x, C &y, C &z) {
// W0, W0, W0, W0
corebutterfly(u, x, y, z);
// first branch
u = reshape(apc) + reshape(bpd);
// third branch
y = reshape(apc) - reshape(bpd);
// second branch
x = C (reshape(real(amc)) + reshape(imag(bmd)),
reshape(imag(amc)) - reshape(real(bmd)));
// last branch
z = C (reshape(real(amc)) - reshape(imag(bmd)),
reshape(imag(amc)) + reshape(real(bmd)));
}
template <class S, class C, class CV>
void Fft<S,C,CV>::r4butterfly1 (C &u, C &x, C &y, C &z, int n) {
// W0, W1/16, W1/8, W3/16
corebutterfly(u, x, y, z);
// first branch
u = reshape(apc) + reshape(bpd);
// third branch
C t(reshape(apc) - reshape(bpd));
y = C (real(t)*inv_sqrt_2 + imag(t)*inv_sqrt_2,
imag(t)*inv_sqrt_2 - real(t)*inv_sqrt_2); // Respect ASIC
// second branch
x = C (reshape(real(amc)) + reshape(imag(bmd)),
reshape(imag(amc)) - reshape(real(bmd)))*twiddle(n);
// last branch
z = C (reshape(real(amc)) - reshape(imag(bmd)),
reshape(imag(amc)) + reshape(real(bmd)))*twiddle(3*n);
}
template <class S, class C, class CV>
void Fft<S,C,CV>::r4butterfly2 (C &u, C &x, C &y, C &z) {
//* W0, W1/8, W1/4, W3/8
corebutterfly(u, x, y, z);
// first branch
u = reshape(apc) + reshape(bpd);
// third branch
y = C (reshape(imag(apc)) - reshape(imag(bpd)),
reshape(real(bpd)) - reshape(real(apc)));
// second branch
C t(reshape(real(amc)) + reshape(imag(bmd)),
reshape(imag(amc)) - reshape(real(bmd)));
x = C (real(t)*inv_sqrt_2 + imag(t)*inv_sqrt_2,
imag(t)*inv_sqrt_2 - real(t)*inv_sqrt_2); // Respect ASIC
// last branch
t = C (reshape(real(amc)) - reshape(imag(bmd)),
reshape(imag(amc)) + reshape(real(bmd)));
z = C (real(t)*(-inv_sqrt_2) - imag(t)*(-inv_sqrt_2),
real(t)*(-inv_sqrt_2) + imag(t)*(-inv_sqrt_2)); // Respect ASIC
}
template <class S, class C, class CV>
void Fft<S,C,CV>::r4butterfly3 (C &u, C &x, C &y, C &z, int n) {
// W0, W3/16, W3/8, W9/16
corebutterfly(u, x, y, z);
// first branch
u = reshape(apc) + reshape(bpd);
// third branch
C t(reshape(apc) - reshape(bpd));
y = C (real(t)*(-inv_sqrt_2) - imag(t)*(-inv_sqrt_2),
real(t)*(-inv_sqrt_2) + imag(t)*(-inv_sqrt_2)); // Respect ASIC
// second branch
x = C (reshape(real(amc)) + reshape(imag(bmd)),
reshape(imag(amc)) - reshape(real(bmd)))*twiddle(3*n);
// last branch
z = C (reshape(real(amc)) - reshape(imag(bmd)),
reshape(imag(amc)) + reshape(real(bmd)))*twiddle(9*n);
}
template <class S, class C, class CV>
void Fft<S,C,CV>::r4butterfly4 (C &u, C &x, C &y, C &z, int n) {
// others
corebutterfly(u, x, y, z);
// first branch
u = reshape(apc) + reshape(bpd);
// third branch
y = (reshape(apc) - reshape(bpd))*twiddle(2*n);
// second branch
x = C (reshape(real(amc)) + reshape(imag(bmd)),
reshape(imag(amc)) - reshape(real(bmd)))*twiddle(n);
// last branch
z = C (reshape(real(amc)) - reshape(imag(bmd)),
reshape(imag(amc)) + reshape(real(bmd)))*twiddle(3*n);
}
/*
*---------------------------------------------------------------------------*
| Function: Radix4FFT |
| |
| Description: performs a Radix4 FFT for size 256 or 1024 |
| |
| Inputs: fft_public FFT_PARAM_PUBLIC |
| Input/Output: realpart CARRIERTYPE* real part of the input data/FFT |
| imagpart CARRIERTYPE* imag part of the input data/FFT |
*---------------------------------------------------------------------------*
*/
template <class S, class C, class CV>
void Fft<S,C,CV>::radix4fft (CV &x) {
// code for radix4FFT function
int p1, p2, p3, p4, pfirst;
int size_16 = size/16;
for (int nb=0, nb_nb = x.length()/size; nb<nb_nb; nb++) {
for (int n_but=4*size_16, l=4*size_16, n_block=1;n_block<l; n_but>>=2, n_block<<=2)
for (int block =0; block<n_block; block++) {
pfirst = p1 = nb*size+block*n_but*4;
p2 = p1 + n_but;
p3 = p2 + n_but;
p4 = p3 + n_but;
// 1st butterfly : W0, W0, W0, W0
r4butterfly0(x(p1), x(p2), x(p3), x(p4));
p1++; p2++; p3++; p4++;
// from 1 to N/16
for (int but=n_block, l=size_16; but<l; but+=n_block) {
r4butterfly4(x(p1), x(p2), x(p3), x(p4), but);
p1++; p2++; p3++; p4++;
}
// (N/16+1)th butterfly: W0, W1/16, W1/8, W3/16 */
r4butterfly1(x(p1), x(p2), x(p3), x(p4), size_16);
p1++; p2++; p3++; p4++;
// from N/16 to N/8
for (int but=size_16+n_block, l=2*size_16; but<l; but+=n_block) {
r4butterfly4(x(p1), x(p2), x(p3), x(p4), but);
p1++; p2++; p3++; p4++;
}
// (N/8+1)th butterfly : W0, W1/8, W1/4, W3/8
r4butterfly2(x(p1), x(p2), x(p3), x(p4));
p1++; p2++; p3++; p4++;
// from N/8 to 3N/16
for (int but=2*size_16+n_block, l=3*size_16; but<l; but+=n_block) {
r4butterfly4(x(p1), x(p2), x(p3), x(p4), but);
p1++; p2++; p3++; p4++;
}
// (3N/16+1)th butterfly:W0, W3/16, W3/8, W9/16
r4butterfly3(x(p1), x(p2), x(p3), x(p4), size_16);
p1++; p2++; p3++; p4++;
// from 3N/16 to N/4
for (int but=3*size_16+n_block, l=4*size_16; but<l; but+=n_block) {
r4butterfly4(x(p1), x(p2), x(p3), x(p4), but);
p1++; p2++; p3++; p4++;
}
}
// last stage: butterflies (W0,W0,W0,W0) only !
int p=nb*size;
int i = 0;
while (i < size) {
r4butterfly0 (x(p), x(p+1), x(p+2), x(p+3));
p += 4;
i += 4;
}
}
normalize (x);
}
/*
*---------------------------------------------------------------------------*
| Function: sortingFFT |
| |
| Description: this function sorts the FFT outputs using the table |
| contained in the file tables/fft_out_sort |
| |
| Inputs: param_public SORTINGFFT_PARAM_PUBLIC |
| pr_in CARRIERTYPE* real part of the nonsorted FFT outputs|
| pi_in CARRIERTYPE* imag part of the nonsorted FFT outputs|
| Outputs: pr_out CARRIERTYPE* real part of the sorted FFT outputs |
| pi_out CARRIERTYPE* imag part of the sorted FFT outputs |
*---------------------------------------------------------------------------*
*/
template <class S, class C, class CV>
CV Fft<S,C,CV>::sortingfft (CV &x) {
CV y(x);
// outputs sorting
for (int n=0, l=y.length()/size; n<l; n++)
for (int i=0; i<size; i++)
y(i+n*size) = x(sort(i)+n*size);
return y;
}
template <>
void Fft<double,Complex,ComplexRowVector>::generatetwiddle
(const unsigned int &is, const unsigned int &ds) {
const double Pi2 = 2 * 3.14159265358979; // 2*pi
twiddle.resize (size);
for (int i=0; i<size; i++)
twiddle(i) = exp (-j_complex*(double)(i)/(double)(size)*Pi2);
}
template <>
void Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>::generatetwiddle
(const unsigned int &is, const unsigned int &ds) {
const double Pi2 = 2 * 3.14159265358979; // 2*pi
ComplexRowVector twiddle_double (size);
for (int i=0; i<size; i++)
twiddle_double(i) = exp (-j_complex*(double)(i)/(double)(size)*Pi2);
twiddle = FixedComplexRowVector (is, ds, twiddle_double);
}
template <class S, class C, class CV>
void Fft<S,C,CV>::generatesort () {
// Resize and fill sort with zeros..
sort.resize (0);
sort.resize_and_fill (size, 0);
for (int i=0; i<size; i++)
for (int j=1, k=size/4; j<size; j<<=2, k>>=2)
sort(i) += j*((i/k)%4);
}
template<>
inline void Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>::normalize
(FixedComplexRowVector &x) {
/*
We reshape data before each butterfly, so we have to multiply
by sqrt(size).
*/
for (int i=0, l=x.length(); i<l; i++)
x(i) = FixedPointComplex (real(x(i))<<output_gain_fp,
imag(x(i))<<output_gain_fp);
}
template <>
inline void Fft<double,Complex,ComplexRowVector>::normalize
(ComplexRowVector &x) {
for (int i=0, l=x.length(); i<l; i++)
x(i) = x(i) / output_gain;
}
template <>
inline FixedPoint Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>::
reshape (FixedPoint t) {
return (t>>1);
}
template <>
inline FixedPointComplex
Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>::reshape
(FixedPointComplex t) {
return (FixedPointComplex (real(t)>>1, imag(t)>>1));
}
template <>
inline Complex Fft<double,Complex,ComplexRowVector>::reshape (Complex t) {
return (t);
}
template <>
inline double Fft<double,Complex,ComplexRowVector>::reshape (double t) {
return (t);
}
template <>
void Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>::
computetemplatevalues (const unsigned int &FftInputI,
const unsigned int &FftInputD) {
j_complex = Complex(0, 1.);
output_gain_fp = 0;
long int i = size;
while (i >>=1)
output_gain_fp++;
output_gain_fp = output_gain_fp / 2;
inv_sqrt_2 = FixedPoint(FftInputI, FftInputD, 1 / sqrt(2.0));
}
template <>
void Fft<double,Complex,ComplexRowVector>::computetemplatevalues (
const unsigned int &FftInputI, const unsigned int &FftInputD) {
j_complex = Complex(0, 1.);
output_gain = sqrt(double(size));
inv_sqrt_2 = 1 / sqrt(2.0);
}
template <>
Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>::Fft
(const int &n, const unsigned int &is, const unsigned int &ds) {
size = n;
int quot = n / 4;
int rem = n % 4;
while ((rem == 0) && (quot != 1)) {
rem = quot % 4;
quot = quot / 4;
}
if (rem) {
error("fft: invalid radix 4 fft\n");
return;
}
computetemplatevalues(is, ds);
generatetwiddle(is, ds);
generatesort();
}
template <>
Fft<double,Complex,ComplexRowVector>::Fft
(const int &n, const unsigned int &is, const unsigned int &ds) {
size = n;
int quot = n / 4;
int rem = n % 4;
while ((rem == 0) && (quot != 1)) {
rem = quot % 4;
quot = quot / 4;
}
if (rem) {
error("fft: invalid radix 4 fft\n");
return;
}
computetemplatevalues();
generatetwiddle();
generatesort();
}
template <class S, class C, class CV>
CV Fft<S,C,CV>::process (CV &x) {
CV y(x);
if (y.length()%size != 0) {
error("fft: incorrect length of fft\n");
return y;
}
radix4fft(y);
return (sortingfft(y));
}
template <class S, class C, class CV>
CV Ifft<S,C,CV>::process (CV &x) {
CV y(x);
for (int i=0, l=y.length(); i<l; i++)
y(i) = C (imag(y(i)), real(y(i)));
y = Fft<S,C,CV>::process (y);
for (int i=0, l=y.length(); i<l; i++)
y(i) = C (imag(y(i)), real(y(i)));
return y;
}
/* class instantiation */
template class Fft<double,Complex,ComplexRowVector>;
template class Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>;
template class Ifft<double,Complex,ComplexRowVector>;
template class Ifft<FixedPoint,FixedPointComplex,FixedComplexRowVector>;
DEFUN_DLD (ffft, args, ,
"-*- texinfo -*-\n\
@deftypefn {Loadable Function} {@var{y} =} ffft (@var{x})\n\
Radix-4 fft in floating and fixed point for vectors of length 4^@var{n},\n\
where @var{n} is an integer. The variable @var{x} can be a either a row of\n\
column vector, in which case a single fft is carried out over the vector\n\
of length 4^@var{n}. If @var{x} is a matrix, the fft is carried on each\n\
column of @var{x} and the matrix must contain 4^@var{n} rows.\n\
\n\
The radix-4 fft is implemented in a manner that attempts to approximate\n\
how it will be implemented in hardware, rather than use a generic butterfly.\n\
The radix-4 algorithm is faster and more precise than the equivalent radix-2\n\
algorithm, and thus is preferred for hardware implementation.\n\
@seealso{fifft}\n\
@end deftypefn")
{
octave_value retval;
if (args.length() != 1)
print_usage ();
else {
if ((args(0).type_id () == octave_fixed_matrix::static_type_id ()) ||
(args(0).type_id () == octave_fixed_complex_matrix::static_type_id ())) {
FixedComplexMatrix f;
if (args(0).type_id () == octave_fixed_matrix::static_type_id ())
f = ((const octave_fixed_matrix&) args(0).get_rep()).
fixed_complex_matrix_value();
else if (args(0).type_id () ==
octave_fixed_complex_matrix::static_type_id ())
f = ((const octave_fixed_complex_matrix&)
args(0).get_rep()).fixed_complex_matrix_value();
if (!error_state) {
bool rowvect = false;
int is = (int)std::max(real(f.getintsize()).row_max().max(),
imag(f.getintsize()).row_max().max());
int ds = (int)std::max(real(f.getdecsize()).row_max().max(),
imag(f.getdecsize()).row_max().max());
if (f.rows() == 1) {
f = f.transpose();
rowvect = true;
}
Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>
fft_radix4(f.rows(), is, ds);
if (!error_state) {
for (int i=0; i < f.cols(); i++) {
FixedComplexRowVector x(f.rows());
for (int j=0; j < f.rows(); j++)
x(j) = f(j,i);
x = fft_radix4.process(x);
for (int j=0; j < f.rows(); j++)
f(j,i) = x(j);
}
if (rowvect)
f = f.transpose();
retval = new octave_fixed_complex_matrix (f);
retval.maybe_mutate();
}
}
} else {
ComplexMatrix f;
if (args(0).is_matrix_type())
f = args(0).complex_matrix_value();
else
error("ffft: must be called with a floating or fixed point vector\n");
if (!error_state) {
bool rowvect = false;
if (f.rows() == 1) {
f = f.transpose();
rowvect = true;
}
Fft<double,Complex,ComplexRowVector> fft_radix4(f.rows());
if (!error_state) {
for (int i=0; i < f.cols(); i++) {
ComplexRowVector x(f.rows());
for (int j=0; j < f.rows(); j++)
x(j) = f(j,i);
x = fft_radix4.process(x);
for (int j=0; j < f.rows(); j++)
f(j,i) = x(j);
}
if (rowvect)
f = f.transpose();
retval = octave_value(f);
}
}
}
}
return retval;
}
DEFUN_DLD (fifft, args, ,
"-*- texinfo -*-\n\
@deftypefn {Loadable Function} {@var{y} =} fifft (@var{x})\n\
Radix-4 ifft in fixed point for vectors of length 4^@var{n}, where.\n\
@var{n} is an integer. The variable @var{x} can be a either a row of\n\
column vector, in which case a single ifft is carried out over the vector\n\
of length 4^@var{n}. If @var{x} is a matrix, the ifft is carried on each\n\
column of @var{x} and the matrix must contain 4^@var{n} rows.\n\
\n\
The radix-4 ifft is implemented in a manner that attempts to approximate\n\
how it will be implemented in hardware, rather than use a generic butterfly.\n\
The radix-4 algorithm is faster and more precise than the equivalent radix-2\n\
algorithm, and thus is preferred for hardware implementation.\n\
@seealso{ffft}\n\
@end deftypefn")
{
octave_value retval;
if (args.length() != 1)
print_usage ();
else {
if ((args(0).type_id () == octave_fixed_matrix::static_type_id ()) ||
(args(0).type_id () == octave_fixed_complex_matrix::static_type_id ())) {
FixedComplexMatrix f;
if (args(0).type_id () == octave_fixed_matrix::static_type_id ())
f = ((const octave_fixed_matrix&) args(0).get_rep()).
fixed_complex_matrix_value();
else if (args(0).type_id () ==
octave_fixed_complex_matrix::static_type_id ())
f = ((const octave_fixed_complex_matrix&)
args(0).get_rep()).fixed_complex_matrix_value();
if (!error_state) {
bool rowvect = false;
int is = (int)std::max(real(f.getintsize()).row_max().max(),
imag(f.getintsize()).row_max().max());
int ds = (int)std::max(real(f.getdecsize()).row_max().max(),
imag(f.getdecsize()).row_max().max());
if (f.rows() == 1) {
f = f.transpose();
rowvect = true;
}
Ifft<FixedPoint,FixedPointComplex,FixedComplexRowVector>
ifft_radix4(f.rows(), is, ds);
if (!error_state) {
for (int i=0; i < f.cols(); i++) {
FixedComplexRowVector x(f.rows());
for (int j=0; j < f.rows(); j++)
x(j) = f(j,i);
x = ifft_radix4.process(x);
for (int j=0; j < f.rows(); j++)
f(j,i) = x(j);
}
if (rowvect)
f = f.transpose();
retval = new octave_fixed_complex_matrix (f);
retval.maybe_mutate();
}
}
} else {
ComplexMatrix f;
if (args(0).is_matrix_type())
f = args(0).complex_matrix_value();
else
error("fifft: must be called with a floating or fixed point vector\n");
if (!error_state) {
bool rowvect = false;
if (f.rows() == 1) {
f = f.transpose();
rowvect = true;
}
Ifft<double,Complex,ComplexRowVector> ifft_radix4(f.rows());
if (!error_state) {
for (int i=0; i < f.cols(); i++) {
ComplexRowVector x(f.rows());
for (int j=0; j < f.rows(); j++)
x(j) = f(j,i);
x = ifft_radix4.process(x);
for (int j=0; j < f.rows(); j++)
f(j,i) = x(j);
}
if (rowvect)
f = f.transpose();
retval = octave_value(f);
}
}
}
}
return retval;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/
|