File: endpoint.cc

package info (click to toggle)
octave-forge 2004.11.16-7
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 16,140 kB
  • ctags: 5,885
  • sloc: cpp: 46,212; ansic: 13,890; perl: 2,702; sh: 2,660; fortran: 1,537; makefile: 1,530; lex: 1,219; tcl: 797; objc: 202
file content (466 lines) | stat: -rw-r--r-- 15,220 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
//
// ENDPOINT.CC - The endpoint class member routines.
//
// Bruce T. Lowerre, Public domain, 1995, 1997
//
// $Log: endpoint.cc,v $
// Revision 1.2  2002/01/04 15:53:56  pkienzle
// Changes required to compile for gcc-3.0 in debian hppa/unstable
//
// Revision 1.1.1.1  2001/10/10 19:54:49  pkienzle
// revised heirarchy
//
// Revision 1.1  2001/04/22 08:29:30  pkienzle
// adding in all of matcompat
//
// Revision 1.4  2001/03/22 Paul Kienzle
// added #include <math.h>
//
// Revision 1.3  1997/07/31 18:32:13  lowerre
// fixed bug with EP_INUTT
//
// Revision 1.2  1997/05/23 20:01:32  lowerre
// renamed endpoint to endpointer, conflicts with <rpcsvc/nis.h>
//
// Revision 1.1  1997/05/14 20:34:38  lowerre
// Initial revision
//
//
//


/* The endpointer is used to determine the start and end of a live
 * input signal.  Unlike a pre-recorded utterance, a live input signal
 * is open-ended in that the actual start and end of the signal is
 * totally unknown.  The search will usually do a fairly good job of
 * guessing the start of the signal.  However, the actual end of the
 * signal is unknown to the recognizer.  Reaching the end state in the
 * recognizer does not necessarily mean the end of signal.  Therefore,
 * the end of signal must be calculated by some means.  This is the
 * job of the end point detector.  This module is accessed via a class
 * structure.  It should be called for each frame of data to determine
 * what processing should be done.
 *
 * The endpointer uses "cheap" signal processing features (energy and
 * zero cross count) and is intended to run constantly on a host
 * processor without the need of a DSP or high speed processor.  When
 * the start of the utterance is detected, then the expensive search
 * can be called.
 *
 * The endpointer is designed to run with a real-time processing
 * search.  That means that the live input signal is processed in
 * real-time while it's being read.  Therefore, the start of signal
 * will occur (and the search will start) before the entire utterance
 * has been read.  The ramifications of this is that the endpointer
 * has to guess as to the possible start and end of utterance.  These
 * guesses, frame labels, are used by other modules to guide the
 * utterance capture and search.  The endpointer may realize that it
 * has mis-labeled either the start of utterance or the end of
 * utterance.  When this happens, a special frame label (either
 * EP_RESET if a false start was detected or EP_NOTEND if a false end
 * was detected) is returned.
 *
 * The algorithms used in this module have evolved from 20 years of
 * work with live input signals.  */


#include <iostream>
#include <cmath>
#include "endpoint.h"
using namespace std;


/* ENDPOINTER::ENDPOINTER - class constructor, set initial values */
endpointer::endpointer
(
    long	d_samprate,		// sampling rate in Hz
    long	d_windowsize,		// windowsize in samples
    long	d_stepsize,		// step size in samples
    long	d_maxipause,		// default ending silence in msec
    long	d_minuttlng,		// default minuttlng in msec
    long	d_zcthresh,		// default zcthresh, Hz
    float	d_begfact,		// default begfact
    float	d_endfact,		// default endfact
    float	d_energyfact,		// default energyfact
    float	d_minstartsilence,	// default minstartsilence
    float	d_triggerfact,		// default triggerfact
    long	d_numdpnoise,		// default numdpnoise
    long	d_minfriclng,		// default minfriclng in msec
    long	d_maxpause,		// default maxpause in msec
    long	d_startblip,		// default startblip in msec
    long	d_endblip,		// default endblip in msec
    long	d_minvoicelng,		// default minvoicelng in msec
    long	d_minrise		// default minrise in msec
)
{
    long	i;

    samprate = d_samprate;
    windowsize = d_windowsize;
    stepsize = d_stepsize;
    maxipause = (d_maxipause * samprate) / (1000 * stepsize); // num steps
    minuttlng = (d_minuttlng * samprate) / (1000 * stepsize); // num steps
    zcthresh = (d_zcthresh * stepsize) / samprate; // per frame
    begfact = d_begfact;
    endfact = d_endfact;
    energyfact = d_energyfact;
    minstartsilence = d_minstartsilence;
    numdpnoise = d_numdpnoise;
    triggerfact = d_triggerfact;
    minfriclng = (d_minfriclng * samprate) / (1000 * stepsize);   // num steps
    maxpause = (d_maxpause * samprate) / (1000 * stepsize);       // num steps
    startblip = (d_startblip * samprate) / (1000 * stepsize);     // num steps
    endblip = (d_endblip * samprate) / (1000 * stepsize);         // num steps
    minvoicelng = (d_minvoicelng * samprate) / (1000 * stepsize); // num steps
    minrise = (d_minrise * samprate) / (1000 * stepsize);         // num steps
    lastdpnoise = new float[numdpnoise];
    for (i = 0; i < numdpnoise; i++)
        lastdpnoise[i] = 0.0;
    initendpoint ();
} // end endpointer::endpointer


/* ENDPOINTER::~ENDPOINTER - class destructor */
endpointer::~endpointer ()
{
    delete []lastdpnoise;
} // end endpointer::~endpointer


/* ENDPOINT::INITENDPOINT - initialize the endpoint variables */
void endpointer::initendpoint ()
{
    long	i;

    epstate = NOSILENCE;
    noise = 0.0;
    ave = 0.0;
    begthresh = 0.0;
    endthresh = begthresh;
    energy = 0.0;
    maxpeak = 0.0;
    scnt = 0;
    vcnt = 0;
    evcnt = 0;
    voicecount = 0;
    zccnt = 0;
    bscnt = 0;
    startframe = 0;
    endframe = 0;
    avescnt = 0;
    startsilenceok = false;
    ncount = 0;
    low = true;
    for (i = 0; i < numdpnoise; i++)
        lastdpnoise[i] = 0.0;
} // end endpointer::initendpoint


void endpointer::setnoise ()
{
    dpnoise = lastdpnoise[1] = lastdpnoise[0];
    ncount = 2;
} // end endpointer::setnoise


/* ENDPOINT::AVERAGENOISE - get average background noise level and
 * shift noise array */
void endpointer::averagenoise ()
{
    long	i;

    for (dpnoise = 0.0, i = ncount - 1; i > 0; i--)
    {
        dpnoise += lastdpnoise[i];
        lastdpnoise[i] = lastdpnoise[i - 1];
    }
    dpnoise = (dpnoise + lastdpnoise[0]) / ncount;
    if (ncount < numdpnoise)
        ncount ++;
} // end endpointer::averagenoise


/* ENDPOINT::ZCPEAKPICK - get the zero cross count and average energy */
void endpointer::zcpeakpick
(
    short	*samples			// raw samples
)
{
    long	i;
    float	sum,
		trigger;
    short	*smp;

    for (sum = 0.0, i = 0, smp = samples; i < windowsize; i++, smp++)
        sum += *smp * *smp;
    peakreturn = (sqrt (sum / windowsize));
    lastdpnoise[0] = peakreturn;

    if (ncount == 0)
        dpnoise = peakreturn;			// initial value
    trigger = dpnoise * triggerfact;		// schmidt trigger band

    for (i = 0, zc = 0, smp = samples; i < windowsize; i++, smp++)
    {
        if (low)
        {
            if (*smp > trigger)
            {					// up cross
                zc++;
                low = false;			// search for down cross
            }
        }
        else
        {
            if (*smp < -trigger)
            {					// down cross
                zc++;
                low = true;			// search for up cross
            }
        }
    }
} // end endpointer::zcpeakpick


/* ENDPOINT::GETENDPOINT - get the endpoint tag for the raw samples
 * The recognition system is designed to operate in real-time.  That
 * is, the search proceeds in parallel with input of the signal.  The
 * endpoint detection must, therefore, make a guess as to what the
 * current sample is and correct errors that may have been made
 * previously.  */
EPTAG endpointer::getendpoint
(
    short	*samples			// raw samples
)
{
    float	tmp;

    zcpeakpick (samples);			// get zc count and peak energy
    if (peakreturn > maxpeak)
    {
        maxpeak = peakreturn;
        if ((tmp = maxpeak / endfact) > endthresh)
            endthresh = tmp;
    }

    switch (epstate)
    {
        case NOSILENCE:				// start, get background silence
            ave += peakreturn;
            if (++scnt <= 3)
            {					// average 3 frame's worth
                if (scnt == 1)
                    setnoise ();
                else
                    averagenoise ();
                if (dpnoise < minstartsilence)
                {
                    startsilenceok = true;
                    ave += peakreturn;
                    avescnt++;
                }
                return (EP_SILENCE);
            }
            if (!startsilenceok)
            {
                epstate = START;
                return (EP_NOSTARTSILENCE);
            }
            ave /= avescnt;
            noise = ave;
            begthresh = noise + begfact;
            endthresh = begthresh;
            mnbe = noise * energyfact;
            epstate = INSILENCE;
            return (EP_SILENCE);

        case INSILENCE:
            ave = ((3.0 * ave) + peakreturn) / 4.0;
            if (peakreturn > begthresh || zc > zcthresh)
            {					// looks like start of signal
                energy += peakreturn - noise;
                if (zc > zcthresh)
                    zccnt++;
                if (peakreturn > begthresh)
                    voicecount++;
                if (++vcnt > minrise)
                {
                    scnt = 0;
                    epstate = START;		// definitely start of signal
                }
                return (EP_SIGNAL);
            }
            else
            {					// still in silence
                energy = 0.0;
                if (ave < noise)
                {
                    noise = ave;
                    begthresh = noise + begfact;
                    endthresh = begthresh;
                    mnbe = noise * energyfact;
                }
                if (vcnt > 0)
                {			// previous frame was signal
                    if (++bscnt > startblip || zccnt == vcnt)
                    {			// Oops, no longer in the signal
                        noise = ave;
                        begthresh = noise * begfact;
                        endthresh = begthresh;
                        mnbe = noise * energyfact;
                        vcnt = 0;
                        zccnt = 0;
                        bscnt = 0;
                        voicecount = 0;
                        startframe = 0;
                        return (EP_RESET);// not in the signal, ignore previous
                    }
                    return (EP_SIGNAL);
                }
                zccnt = 0;
                return (EP_SILENCE);
            }

         case START:
             if (peakreturn > begthresh || zc > zcthresh)
             {				// possible start of signal
                 energy += peakreturn - noise;
                 if (zc > zcthresh)
                     zccnt++;
                 if (peakreturn > begthresh)
                     voicecount++;
                 vcnt += scnt + 1;
                 scnt = 0;
                 if (energy > mnbe || zccnt > minfriclng)
                 {
                     epstate = INSIGNAL;
                     return (EP_INUTT);
                 }
                 else 
                     return (EP_SIGNAL);
             }
             else
             if (++scnt > maxpause)
             {				// signal went low again, false start
                 vcnt = zccnt = voicecount = 0;
                 energy = 0.0;
                 epstate = INSILENCE;
                 ave = ((3.0 * ave) + peakreturn) / 4.0;
                 if (ave < noise + begfact)
                 {			// lower noise level
                     noise = ave;
                     begthresh = noise + begfact;
                     endthresh = begthresh;
                     mnbe = noise * energyfact;
                 }
                 return (EP_RESET);
             }
             else 
	       return (EP_SIGNAL);

        case INSIGNAL:
            if (peakreturn > endthresh || zc > zcthresh)
            {				// still in signal
                if (peakreturn > endthresh)
                    voicecount++;
                vcnt++;
                scnt = 0;
                return (EP_SIGNAL);
            }
            else
            {				// below end threshold, may be end
                scnt++;
                epstate = END;
                return (EP_MAYBEEND);
            }

        case END:
            if (peakreturn > endthresh || zc > zcthresh)
            {				// signal went up again, may not be end
                if (peakreturn > endthresh)
                    voicecount++;
                if (++evcnt > endblip)
                {			// back in signal again
                    vcnt += scnt + 1;
                    evcnt = 0;
                    scnt = 0;
                    epstate = INSIGNAL;
                    return (EP_NOTEND);
                }
                else 
		  return (EP_SIGNAL);
            }
            else
            if (++scnt > maxipause)
            {				// silence exceeds inter-word pause
                if (vcnt > minuttlng && voicecount > minvoicelng)
                    return (EP_ENDOFUTT);// end of utterance
                else
                {			// signal is too short
                    scnt = vcnt = voicecount = 0;
                    epstate = INSILENCE;
                    return (EP_RESET);	// false utterance, keep looking
                }
            }
            else
            {				// may be an inter-word pause
                if (peakreturn == 0)
                    return (EP_ENDOFUTT);// zero filler frame
                evcnt = 0;
                return (EP_SIGNAL);	// assume still in signal
            }
    }
} // end endpointer::getendpoint


/* ENDPOINT::PRINTVARS: Print variable values */
void endpointer::printvars ()
{
    cout << "endpoint variables:" << endl;
    cout << "    begfact         " << begfact << endl;
    cout << "    endblip         " << endblip << endl;
    cout << "    endfact         " << endfact << endl;
    cout << "    energyfact      " << energyfact << endl;
    cout << "    maxipause       " << maxipause << endl;
    cout << "    maxpause        " << maxpause << endl;
    cout << "    minfriclng      " << minfriclng << endl;
    cout << "    minrise         " << minrise << endl;
    cout << "    minstartsilence " << minstartsilence << endl;
    cout << "    minuttlng       " << minuttlng << endl;
    cout << "    minvoicelng     " << minvoicelng << endl;
    cout << "    numdpnoise      " << numdpnoise << endl;
    cout << "    samprate        " << samprate << endl;
    cout << "    startblip       " << startblip << endl;
    cout << "    stepsize        " << stepsize << endl;
    cout << "    triggerfact     " << triggerfact << endl;
    cout << "    windowsize      " << windowsize << endl;
    cout << "    zcthresh        " << zcthresh << endl;
} // end endpointer::printvars


/* ENDPOINT::GETTAGNAME - convert the tag to ascii */
const char *endpointer::gettagname
(
    EPTAG	tag
)
{
    static const char *tagnames[] =	// must match EPTAG enum in endpoint.h
		{
			"NONE",
			"RESET",
			"SILENCE",
			"SIGNAL",
			"INUTT",
			"MAYBEEND",
			"ENDOFUTT",
			"NOTEND",
			"NOSTARTSILENCE"
		};
    long	ntag = long (tag);

    if (ntag < 0 || ntag > long (EP_NOSTARTSILENCE))
        return ("UNKNOWN");
    else
        return (tagnames[ntag]);
} // end endpointer::gettagname