File: evalfis.html

package info (click to toggle)
octave-fuzzy-logic-toolkit 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: makefile: 147
file content (250 lines) | stat: -rw-r--r-- 12,709 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
<!DOCTYPE html>
<html lang="en">
  <head>
    <title>Octave Fuzzy Logic Toolkit: evalfis</title>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css" integrity="sha512-1ycn6IcaQQ40/MKBW2W4Rhis/DbILU74C1vSrLJxCq57o941Ym01SwNsOMqvEBFlcgUa6xLiPY/NS5R+E6ztJQ==" crossorigin="anonymous" referrerpolicy="no-referrer">
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css" integrity="sha384-KyZXEAg3QhqLMpG8r+8fhAXLRk2vvoC2f3B09zVXn8CA5QIVfZOJ3BCsw2P0p/We" crossorigin="anonymous">
    <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/js/bootstrap.bundle.min.js" integrity="sha384-U1DAWAznBHeqEIlVSCgzq+c9gqGAJn5c/t99JyeKa9xxaYpSvHU5awsuZVVFIhvj" crossorigin="anonymous"></script>
    <script type="text/javascript" async
      src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML">
    </script>
    <style>
    var {
      font-style: italics;
      font-weight: bold;
    }
    td {
      vertical-align: top;
    }
    </style>
  </head>
  <body>
    <div class="bg-dark">
      <div class="container-xl">
        <nav class="navbar navbar-expand-lg navbar-dark bg-dark">
          <div class="container-fluid">
            <a class="navbar-brand" href=index.html>
              <img src="assets/fuzzy-logic-toolkit.png" alt="fuzzy-logic-toolkit" class="d-inline-block align-top" width="25" height="25">
              Octave Fuzzy Logic Toolkit
            </a>
            <button type="button" class="navbar-toggler" data-bs-toggle="collapse" data-bs-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
              <span class="navbar-toggler-icon"></span>
            </button>
            <div class="collapse navbar-collapse" id="navbarNav">
              <ul class="navbar-nav">
                <li class="nav-item">
                  <a class="nav-link" href="index.html#Evaluation">
                    <i class="fas fa-list-alt"></i>
                    Evaluation
                  </a>
                </li>
                <li class="nav-item">
                  <a class="nav-link" href="https://gnu-octave.github.io/packages/">
                  <img src="assets/octave-logo.svg" alt="GNU Octave logo" class="d-inline-block align-top" width="25" height="25">
                    Octave Packages
                  </a>
                </li>
                <li class="nav-item">
                  <a class="nav-link" href="https://www.octave.org">
                    <i class="fas fa-home"></i>
                    GNU Octave website
                  </a>
                </li>
              </ul>
            </div>
          </div>
        </nav>
      </div>
    </div>
    <div class="container-xl my-4">
      <div class="card rounded">
        <div class="card-header card-header-mod">
          <div class="row d-flex flex-wrap align-items-center">
            <div class="col-sm-3 col-md-5 mb-2 mb-sm-0">
              <h3 class="d-inline-block mr-2">
              Function&nbsp;Reference: <b><code>evalfis</code></b>
              </h3>
            </div>
          </div>
        </div>
        <div class="card-body">
<dl>
<dt><u>Function File:</u> <var>output</var> = <b>evalfis</b><i> (<var>user_input</var>, <var>fis</var>)</i></dt>
<dt><u>Function File:</u> <var>output</var> = <b>evalfis</b><i> (<var>user_input</var>, <var>fis</var>, <var>num_points</var>)</i></dt>
<dt><u>Function File:</u> [<var>output</var>, <var>rule_input</var>, <var>rule_output</var>, <var>fuzzy_output</var>] = <b>evalfis</b><i> (<var>user_input</var>, <var>fis</var>)</i></dt>
<dt><u>Function File:</u> [<var>output</var>, <var>rule_input</var>, <var>rule_output</var>, <var>fuzzy_output</var>] = <b>evalfis</b><i> (<var>user_input</var>, <var>fis</var>, <var>num_points</var>)</i></dt>
</dl>

<p> Return the crisp output(s) of an FIS for each row in a matrix of crisp input
 values.
 Also, for the last row of <var>user_input</var>, return the intermediate results:
</p>
<div class="ms-5">
 <table>
<thead><tr><th width="25%">Intermediate Result</th><th width="65%">Value Returned</th></tr></thead>
<tr><td width="25%"><var>rule_input</var></td><td width="65%">a matrix of the degree to which each FIS rule matches each
       FIS input variable</td></tr>
<tr><td width="25%"><var>rule_output</var></td><td width="65%">a matrix of the fuzzy output for each (rule, FIS output) pair</td></tr>
<tr><td width="25%"><var>fuzzy_output</var></td><td width="65%">a matrix of the aggregated output for each FIS output variable</td></tr>
</table>
 <br>
<p> The optional argument <var>num_points</var> specifies the number of points over
 which to evaluate the fuzzy values. The default value of <var>num_points</var> is
 101.
</p>
<p> <strong>Argument <var>user_input</var>:</strong>
 <var>user_input</var> is a matrix of crisp input values. Each row 
 represents one set of crisp FIS input values. For an FIS that has N inputs,
 an input matrix of z sets of input values will have the form:
</p>
<pre class="verbatim">   [[input_11 input_12 ... input_1N]   &lt;-- 1st row is 1st set of inputs
    [input_21 input_22 ... input_2N]   &lt;-- 2nd row is 2nd set of inputs
    [             ...              ]                  ...
    [input_z1 input_z2 ... input_zN]]  &lt;-- zth row is zth set of inputs
 </pre>
<p> <strong>Return value <var>output</var>:</strong>
 <var>output</var> is a matrix of crisp output values. Each row represents
 the set of crisp FIS output values for the corresponding row of
 <var>user_input</var>. For an FIS that has M outputs, an <var>output</var> matrix
 corresponding to the preceding input matrix will have the form:
</p>
<pre class="verbatim">   [[output_11 output_12 ... output_1M]   &lt;-- 1st row is 1st set of outputs
    [output_21 output_22 ... output_2M]   &lt;-- 2nd row is 2nd set of outputs
    [               ...               ]                  ...
    [output_z1 output_z2 ... output_zM]]  &lt;-- zth row is zth set of outputs
 </pre>
<p> <strong>The intermediate result <var>rule_input</var>:</strong>
 The matching degree for each (rule, input value) pair is specified by the
 <var>rule_input</var> matrix. For an FIS that has Q rules and N input variables,
 the matrix will have the form:
 </p><pre class="verbatim">            in_1  in_2 ...  in_N
   rule_1 [[mu_11 mu_12 ... mu_1N]
   rule_2  [mu_21 mu_22 ... mu_2N]
           [            ...      ]
   rule_Q  [mu_Q1 mu_Q2 ... mu_QN]]
 </pre>
<p> <strong>Evaluation of hedges and &quot;not&quot;:</strong>
 Each element of each FIS rule antecedent and consequent indicates the
 corresponding membership function, hedge, and whether or not &quot;not&quot; should
 be applied to the result. The index of the membership function to be used is
 given by the positive whole number portion of the antecedent/consequent
 vector entry, the hedge is given by the fractional portion (if any), and
 &quot;not&quot; is indicated by a minus sign. A &quot;0&quot; as the integer portion in any
 position in the rule indicates that the corresponding FIS input or output
 variable is omitted from the rule.
</p>
<p> For custom hedges and the four built-in hedges &quot;somewhat,&quot; &quot;very,&quot;
 &quot;extremely,&quot; and &quot;very very,&quot; the membership function value (without the
 hedge or &quot;not&quot;) is raised to the power corresponding to the hedge. All
 hedges are rounded to 2 digits.
</p>
<p> For example, if &quot;mu(x)&quot; denotes the matching degree of the input to the
 corresponding membership function without a hedge or &quot;not,&quot; then the final
 matching degree recorded in <var>rule_input</var> will be computed by applying
 the hedge and &quot;not&quot; in two steps. First, the hedge is applied:
</p>
<pre class="verbatim">   (fraction == .05) &lt;=&gt;  somewhat x       &lt;=&gt;  mu(x)^0.5  &lt;=&gt;  sqrt(mu(x))
   (fraction == .20) &lt;=&gt;  very x           &lt;=&gt;  mu(x)^2    &lt;=&gt;  sqr(mu(x))
   (fraction == .30) &lt;=&gt;  extremely x      &lt;=&gt;  mu(x)^3    &lt;=&gt;  cube(mu(x))
   (fraction == .40) &lt;=&gt;  very very x      &lt;=&gt;  mu(x)^4
   (fraction == .dd) &lt;=&gt;  &lt;custom hedge&gt; x &lt;=&gt;  mu(x)^(dd/10)
 </pre>
<p> After applying the appropriate hedge, &quot;not&quot; is calculated by:
</p>
<pre class="verbatim">   minus sign present           &lt;=&gt; not x         &lt;=&gt; 1 - mu(x)
   minus sign and hedge present &lt;=&gt; not &lt;hedge&gt; x &lt;=&gt; 1 - mu(x)^(dd/10)
 </pre>
<p> Hedges and &quot;not&quot; in the consequent are handled similarly.
</p>
<p> <strong>The intermediate result <var>rule_output</var>:</strong>
 For either a Mamdani-type FIS (that is, an FIS that does not have constant or
 linear output membership functions) or a Sugeno-type FIS (that is, an FIS
 that has only constant and linear output membership functions),
 <var>rule_output</var> specifies the fuzzy output for each (rule, FIS output) pair.
 The format of rule_output depends on the FIS type.
</p>
<p> For a Mamdani-type FIS, <var>rule_output</var> is a <var>num_points</var> x (Q * M)
 matrix, where Q is the number of rules and M is the number of FIS output
 variables. Each column of this matrix gives the y-values of the fuzzy
 output for a single (rule, FIS output) pair.
</p>
<pre class="verbatim">                     Q cols            Q cols              Q cols 
                ---------------   ---------------     ---------------
                out_1 ... out_1   out_2 ... out_2 ... out_M ... out_M
            1 [[                                                     ]
            2  [                                                     ]
           ... [                                                     ]
   num_points  [                                                     ]]
 </pre>
<p> For a Sugeno-type FIS, <var>rule_output</var> is a 2 x (Q * M) matrix.
 Each column of this matrix gives the (location, height) pair of the
 singleton output for a single (rule, FIS output) pair.
</p>
<pre class="verbatim">                   Q cols            Q cols                  Q cols 
              ---------------   ---------------         ---------------
              out_1 ... out_1   out_2 ... out_2   ...   out_M ... out_M
   location [[                                                         ]
     height  [                                                         ]]
 </pre>
<p> <strong>The intermediate result <var>fuzzy_output</var>:</strong>
 The format of <var>fuzzy_output</var> depends on the FIS type (&rsquo;mamdani&rsquo; or
 &rsquo;sugeno&rsquo;).
</p>
<p> For either a Mamdani-type FIS or a Sugeno-type FIS, <var>fuzzy_output</var>
 specifies the aggregated fuzzy output for each FIS output.
</p>
<p> For a Mamdani-type FIS, the aggregated <var>fuzzy_output</var> is a
 <var>num_points</var> x M matrix. Each column of this matrix gives the y-values
 of the fuzzy output for a single FIS output, aggregated over all rules.
</p>
<pre class="verbatim">                out_1  out_2  ...  out_M
            1 [[                        ]
            2  [                        ]
           ... [                        ]
   num_points  [                        ]]
 </pre>
<p> For a Sugeno-type FIS, the aggregated output for each FIS output is a 2 x L
 matrix, where L is the number of distinct singleton locations in the
 <var>rule_output</var> for that FIS output:
</p>
<pre class="verbatim">              singleton_1  singleton_2 ... singleton_L
   location [[                                        ]
     height  [                                        ]]
 </pre>
<p> Then <var>fuzzy_output</var> is a vector of M structures, each of which has an index and
 one of these matrices.
</p>
<p> <strong>Examples:</strong>
 Five examples of using evalfis are shown in:
 </p><ul>
<li>
 heart_disease_demo_2.m
 </li><li>
 investment_portfolio_demo.m
 </li><li>
 linear_tip_demo.m
 </li><li>
 mamdani_tip_demo.m
 </li><li>
 sugeno_tip_demo.m
 </li></ul>

<p> <strong>See also: </strong>
  <a href="cubic_approx_demo.html">cubic_approx_demo</a>, 
  <a href="heart_disease_demo_1.html">heart_disease_demo_1</a>, 
  <a href="heart_disease_demo_2.html">heart_disease_demo_2</a>, 
  <a href="investment_portfolio_demo.html">investment_portfolio_demo</a>, 
  <a href="linear_tip_demo.html">linear_tip_demo</a>, 
  <a href="mamdani_tip_demo.html">mamdani_tip_demo</a>, 
  <a href="sugeno_tip_demo.html">sugeno_tip_demo</a>
</p>
</div>

        </div>
      </div>
    </div>

  </body>
</html>