1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
<!DOCTYPE html>
<html lang="en">
<head>
<title>Octave Fuzzy Logic Toolkit: gustafson_kessel</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css" integrity="sha512-1ycn6IcaQQ40/MKBW2W4Rhis/DbILU74C1vSrLJxCq57o941Ym01SwNsOMqvEBFlcgUa6xLiPY/NS5R+E6ztJQ==" crossorigin="anonymous" referrerpolicy="no-referrer">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css" integrity="sha384-KyZXEAg3QhqLMpG8r+8fhAXLRk2vvoC2f3B09zVXn8CA5QIVfZOJ3BCsw2P0p/We" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/js/bootstrap.bundle.min.js" integrity="sha384-U1DAWAznBHeqEIlVSCgzq+c9gqGAJn5c/t99JyeKa9xxaYpSvHU5awsuZVVFIhvj" crossorigin="anonymous"></script>
<script type="text/javascript" async
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML">
</script>
<style>
var {
font-style: italics;
font-weight: bold;
}
td {
vertical-align: top;
}
</style>
</head>
<body>
<div class="bg-dark">
<div class="container-xl">
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
<div class="container-fluid">
<a class="navbar-brand" href=index.html>
<img src="assets/fuzzy-logic-toolkit.png" alt="fuzzy-logic-toolkit" class="d-inline-block align-top" width="25" height="25">
Octave Fuzzy Logic Toolkit
</a>
<button type="button" class="navbar-toggler" data-bs-toggle="collapse" data-bs-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarNav">
<ul class="navbar-nav">
<li class="nav-item">
<a class="nav-link" href="index.html#Fuzzy Clustering Functions">
<i class="fas fa-list-alt"></i>
Fuzzy Clustering Functions
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://gnu-octave.github.io/packages/">
<img src="assets/octave-logo.svg" alt="GNU Octave logo" class="d-inline-block align-top" width="25" height="25">
Octave Packages
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://www.octave.org">
<i class="fas fa-home"></i>
GNU Octave website
</a>
</li>
</ul>
</div>
</div>
</nav>
</div>
</div>
<div class="container-xl my-4">
<div class="card rounded">
<div class="card-header card-header-mod">
<div class="row d-flex flex-wrap align-items-center">
<div class="col-sm-3 col-md-5 mb-2 mb-sm-0">
<h3 class="d-inline-block mr-2">
Function Reference: <b><code>gustafson_kessel</code></b>
</h3>
</div>
</div>
</div>
<div class="card-body">
<dl>
<dt><u>Function File:</u> <var>cluster_centers</var> = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>)</i></dt>
<dt><u>Function File:</u> <var>cluster_centers</var> = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>, <var>cluster_volume</var>)</i></dt>
<dt><u>Function File:</u> <var>cluster_centers</var> = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>, <var>cluster_volume</var>, <var>options</var>)</i></dt>
<dt><u>Function File:</u> <var>cluster_centers</var> = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>, <var>cluster_volume</var>, [<var>m</var>, <var>max_iterations</var>, <var>epsilon</var>, <var>display_intermediate_results</var>])</i></dt>
<dt><u>Function File:</u> [<var>cluster_centers</var>, <var>soft_partition</var>, <var>obj_fcn_history</var>] = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>)</i></dt>
<dt><u>Function File:</u> [<var>cluster_centers</var>, <var>soft_partition</var>, <var>obj_fcn_history</var>] = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>, <var>cluster_volume</var>)</i></dt>
<dt><u>Function File:</u> [<var>cluster_centers</var>, <var>soft_partition</var>, <var>obj_fcn_history</var>] = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>, <var>cluster_volume</var>, <var>options</var>)</i></dt>
<dt><u>Function File:</u> [<var>cluster_centers</var>, <var>soft_partition</var>, <var>obj_fcn_history</var>] = <b>gustafson_kessel</b><i> (<var>input_data</var>, <var>num_clusters</var>, <var>cluster_volume</var>, [<var>m</var>, <var>max_iterations</var>, <var>epsilon</var>, <var>display_intermediate_results</var>])</i></dt>
</dl>
<p> Using the Gustafson-Kessel algorithm, calculate and return the soft partition
of a set of unlabeled data points.
</p>
<div class="ms-5">
<p> Also, if <var>display_intermediate_results</var> is true, display intermediate
results after each iteration. Note that because the initial cluster
prototypes are randomly selected locations in the ranges determined by the
input data, the results of this function are nondeterministic.
</p>
<p> The required arguments to gustafson_kessel are:
</p><ul class="toc">
<li>
<var>input_data</var>: a matrix of input data points; each row corresponds to one point
</li><li>
<var>num_clusters</var>: the number of clusters to form
</li></ul>
<p> The third (optional) argument to gustafson_kessel is a vector of cluster volumes.
If omitted, a vector of 1’s will be used as the default.
</p>
<p> The fourth (optional) argument to gustafson_kessel is a vector consisting of:
</p><ul class="toc">
<li>
<var>m</var>: the parameter (exponent) in the objective function; default = 2.0
</li><li>
<var>max_iterations</var>: the maximum number of iterations before stopping; default = 100
</li><li>
<var>epsilon</var>: the stopping criteria; default = 1e-5
</li><li>
<var>display_intermediate_results</var>: if 1, display results after each iteration, and if 0, do not; default = 1
</li></ul>
<p> The default values are used if any of the four elements of the vector are missing or
evaluate to NaN.
</p>
<p> The return values are:
</p><ul class="toc">
<li>
<var>cluster_centers</var>: a matrix of the cluster centers; each row corresponds to one point
</li><li>
<var>soft_partition</var>: a constrained soft partition matrix
</li><li>
<var>obj_fcn_history</var>: the values of the objective function after each iteration
</li></ul>
<p> Three important matrices used in the calculation are X (the input points
to be clustered), V (the cluster centers), and Mu (the membership of each
data point in each cluster). Each row of X and V denotes a single point,
and Mu(i, j) denotes the membership degree of input point X(j, :) in the
cluster having center V(i, :).
</p>
<p> X is identical to the required argument <var>input_data</var>; V is identical
to the output <var>cluster_centers</var>; and Mu is identical to the output
<var>soft_partition</var>.
</p>
<p> If n denotes the number of input points and k denotes the number of
clusters to be formed, then X, V, and Mu have the dimensions:
</p>
<pre class="verbatim"> 1 2 ... #features
1 [[ ]
X = input_data = 2 [ ]
... [ ]
n [ ]]
1 2 ... #features
1 [[ ]
V = cluster_centers = 2 [ ]
... [ ]
k [ ]]
1 2 ... n
1 [[ ]
Mu = soft_partition = 2 [ ]
... [ ]
k [ ]]
</pre>
<p> <strong>See also: </strong>
<a href="fcm.html">fcm</a>,
<a href="partition_coeff.html">partition_coeff</a>,
<a href="partition_entropy.html">partition_entropy</a>,
<a href="xie_beni_index.html">xie_beni_index</a>
</p>
</div>
<div class="container-xl my-4">
<div class="card rounded">
<div class="card-header card-header-mod">
<div class="row d-flex flex-wrap align-items-center">
<div class="col-sm-3 col-md-5 mb-2 mb-sm-0">
<h3 class="d-inline-block mr-2">
Example: 1
</h3>
</div>
</div>
</div>
<div class="card-body">
<div class="container bg-light">
<div class="row">
<table><tbody><tr>
<td> </td>
<td><pre class="example">
## This demo:
## - classifies a small set of unlabeled data points using
## the Gustafson-Kessel algorithm into two fuzzy clusters
## - plots the input points together with the cluster centers
## - evaluates the quality of the resulting clusters using
## three validity measures: the partition coefficient, the
## partition entropy, and the Xie-Beni validity index
##
## Note: The input_data is taken from Chapter 13, Example 17 in
## Fuzzy Logic: Intelligence, Control and Information, by
## J. Yen and R. Langari, Prentice Hall, 1999, page 381
## (International Edition).
## Use gustafson_kessel to classify the input_data.
input_data = [2 12; 4 9; 7 13; 11 5; 12 7; 14 4];
number_of_clusters = 2;
[cluster_centers, soft_partition, obj_fcn_history] = ...
gustafson_kessel (input_data, number_of_clusters)
## Plot the data points as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 1');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 2');
grid
hold
## Calculate and print the three validity measures.
printf ("Partition Coefficient: %f\n", ...
partition_coeff (soft_partition));
printf ("Partition Entropy (with a = 2): %f\n", ...
partition_entropy (soft_partition, 2));
printf ("Xie-Beni Index: %f\n\n", ...
xie_beni_index (input_data, cluster_centers, ...
soft_partition));
Iteration count = 1, Objective fcn = 45.858745
Iteration count = 2, Objective fcn = 32.524816
Iteration count = 3, Objective fcn = 26.049556
Iteration count = 4, Objective fcn = 25.673979
Iteration count = 5, Objective fcn = 25.652426
Iteration count = 6, Objective fcn = 25.647293
Iteration count = 7, Objective fcn = 25.645559
Iteration count = 8, Objective fcn = 25.644959
Iteration count = 9, Objective fcn = 25.644752
Iteration count = 10, Objective fcn = 25.644681
Iteration count = 11, Objective fcn = 25.644657
Iteration count = 12, Objective fcn = 25.644648
Iteration count = 13, Objective fcn = 25.644645
Iteration count = 14, Objective fcn = 25.644644
Iteration count = 15, Objective fcn = 25.644644
Iteration count = 16, Objective fcn = 25.644644
Iteration count = 17, Objective fcn = 25.644644
Iteration count = 18, Objective fcn = 25.644644
Iteration count = 19, Objective fcn = 25.644644
Iteration count = 20, Objective fcn = 25.644644
Iteration count = 21, Objective fcn = 25.644644
cluster_centers =
12.2661 5.3877
4.2228 11.3276
soft_partition =
0.065974 0.109473 0.129499 0.976470 0.971912 0.987408
0.934026 0.890527 0.870501 0.023530 0.028088 0.012592
obj_fcn_history =
Columns 1 through 10:
45.859 32.525 26.050 25.674 25.652 25.647 25.646 25.645 25.645 25.645
Columns 11 through 20:
25.645 25.645 25.645 25.645 25.645 25.645 25.645 25.645 25.645 25.645
Column 21:
25.645
Partition Coefficient: 0.888484
Partition Entropy (with a = 2): 0.308027
Xie-Beni Index: 0.107028
</pre></td></tr></tbody>
</table>
<div class="text-center">
<img src="assets/gustafson_kessel_101.png" class="rounded img-thumbnail" alt="plotted figure">
</div><p></p>
</div>
</div>
</div>
</div>
</div>
<div class="container-xl my-4">
<div class="card rounded">
<div class="card-header card-header-mod">
<div class="row d-flex flex-wrap align-items-center">
<div class="col-sm-3 col-md-5 mb-2 mb-sm-0">
<h3 class="d-inline-block mr-2">
Example: 2
</h3>
</div>
</div>
</div>
<div class="card-body">
<div class="container bg-light">
<div class="row">
<table><tbody><tr>
<td> </td>
<td><pre class="example">
## This demo:
## - classifies three-dimensional unlabeled data points using
## the Gustafson-Kessel algorithm into three fuzzy clusters
## - plots the input points together with the cluster centers
## - evaluates the quality of the resulting clusters using
## three validity measures: the partition coefficient, the
## partition entropy, and the Xie-Beni validity index
##
## Note: The input_data was selected to form three areas of
## different shapes.
## Use gustafson_kessel to classify the input_data.
input_data = [1 11 5; 1 12 6; 1 13 5; 2 11 7; 2 12 6; 2 13 7;
3 11 6; 3 12 5; 3 13 7; 1 1 10; 1 3 9; 2 2 11;
3 1 9; 3 3 10; 3 5 11; 4 4 9; 4 6 8; 5 5 8; 5 7 9;
6 6 10; 9 10 12; 9 12 13; 9 13 14; 10 9 13; 10 13 12;
11 10 14; 11 12 13; 12 6 12; 12 7 15; 12 9 15;
14 6 14; 14 8 13];
number_of_clusters = 3;
[cluster_centers, soft_partition, obj_fcn_history] = ...
gustafson_kessel (input_data, number_of_clusters, [1 1 1], ...
[NaN NaN NaN 0])
## Plot the data points in two dimensions (using features 1 & 2)
## as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 2');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers in two dimensions
## (using features 1 & 2) as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 2');
grid
## Plot the data points in two dimensions
## (using features 1 & 3) as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 2');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 3), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers in two dimensions
## (using features 1 & 3) as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 3), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 3');
grid
hold
## Calculate and print the three validity measures.
printf ("Partition Coefficient: %f\n", ...
partition_coeff (soft_partition));
printf ("Partition Entropy (with a = 2): %f\n", ...
partition_entropy (soft_partition, 2));
printf ("Xie-Beni Index: %f\n\n", ...
xie_beni_index (input_data, cluster_centers, ...
soft_partition));
cluster_centers =
3.2679 3.7416 9.5189
11.1675 9.5123 13.4360
2.0744 11.9210 6.0810
soft_partition =
Columns 1 through 7:
1.9129e-02 9.7022e-03 1.0643e-02 2.4975e-02 8.9273e-05 1.9737e-02 2.1778e-02
1.1157e-02 7.1681e-03 9.2569e-03 1.3793e-02 6.1636e-05 1.8522e-02 1.0694e-02
9.6971e-01 9.8313e-01 9.8010e-01 9.6123e-01 9.9985e-01 9.6174e-01 9.6753e-01
Columns 8 through 14:
4.1337e-02 2.3680e-02 9.6778e-01 9.1988e-01 9.5714e-01 9.2049e-01 9.9099e-01
2.5264e-02 2.0998e-02 9.2635e-03 1.8979e-02 1.3117e-02 2.2734e-02 2.4882e-03
9.3340e-01 9.5532e-01 2.2954e-02 6.1140e-02 2.9744e-02 5.6773e-02 6.5221e-03
Columns 15 through 21:
8.8919e-01 9.8157e-01 8.2057e-01 8.7617e-01 8.2343e-01 8.1787e-01 1.3809e-01
3.1044e-02 4.4868e-03 2.9448e-02 2.6948e-02 3.3445e-02 5.4462e-02 7.2960e-01
7.9764e-02 1.3944e-02 1.4998e-01 9.6877e-02 1.4313e-01 1.2767e-01 1.3231e-01
Columns 22 through 28:
4.4812e-02 5.9662e-02 4.7384e-02 1.0958e-01 8.6143e-03 5.4236e-02 8.1535e-02
9.0208e-01 8.6338e-01 9.0000e-01 7.8177e-01 9.8041e-01 8.8735e-01 8.1781e-01
5.3109e-02 7.6958e-02 5.2618e-02 1.0865e-01 1.0973e-02 5.8411e-02 1.0065e-01
Columns 29 through 32:
4.1312e-02 3.1916e-02 2.5981e-02 5.2999e-02
8.9517e-01 9.2117e-01 9.3144e-01 8.7447e-01
6.3519e-02 4.6918e-02 4.2584e-02 7.2535e-02
obj_fcn_history =
Columns 1 through 10:
225.36 174.39 162.04 153.98 148.21 143.92 140.45 137.19 133.86 130.30
Columns 11 through 20:
126.69 123.61 121.64 120.69 120.29 120.13 120.07 120.05 120.04 120.03
Columns 21 through 30:
120.03 120.03 120.03 120.03 120.03 120.03 120.03 120.03 120.03 120.03
Columns 31 through 33:
120.03 120.03 120.03
Partition Coefficient: 0.841843
Partition Entropy (with a = 2): 0.472419
Xie-Beni Index: 0.192632
</pre></td></tr></tbody>
</table>
<div class="text-center">
<img src="assets/gustafson_kessel_202.png" class="rounded img-thumbnail" alt="plotted figure">
</div><p></p>
<div class="text-center">
<img src="assets/gustafson_kessel_201.png" class="rounded img-thumbnail" alt="plotted figure">
</div><p></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>
|