1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{fis} =} addrule (@var{fis}, @var{rule_matrix})
##
## Add a list of rules to an existing FIS structure and return
## the updated FIS.
##
## Each row of the @var{rule_matrix} represents one rule and has the form:
##
## @verbatim
## [in1_mf ... inM_mf out1_mf ... outN_mf weight connect]
## @end verbatim
##
## where:
##
## @multitable @columnfractions .25 .70
## @headitem Element in Rule Vector @tab Expected Type or Value
## @item in<i>_mf
## @tab membership function index for input i
## @item out<j>_mf
## @tab membership function index for output j
## @item weight
## @tab relative weight of the rule (0 <= weight <= 1)
## @item connect
## @tab antecedent connective (1 == and; 2 == or)
## @item @ @
## @tab @ @
## @headitem Hedge String @tab Effect of Applying Hedge
## @item "not"
## @tab prepend a minus sign to the membership function index
## @item "somewhat"
## @tab append ".05" to the membership function index
## @item "very"
## @tab append ".20" to the membership function index
## @item "extremely"
## @tab append ".30" to the membership function index
## @item "very very"
## @tab append ".40" to the membership function index
## @item custom hedge
## @tab append .xy, where x.y is the degree to which the membership
## value should be raised, to the membership function index
## @end multitable
## @sp 1
## To omit an input or output, use 0 for the membership function index.
## The consequent connective is always "and".
##
## For example, to express:
##
## @verbatim
## "If (input_1 is mf_2) or (input_3 is not mf_1) or (input_4 is very mf_1),
## then (output_1 is mf_2) and (output_2 is mf_1^0.3)."
## @end verbatim
##
## with weight 1, the corresponding row of @var{rule_matrix} would be:
##
## @verbatim
## [2 0 -1 4.2 2 1.03 1 2]
## @end verbatim
##
## For a complete example that uses addrule, see heart_disease_demo_1.m.
##
## @seealso{heart_disease_demo_1, showrule}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy rule
## Directory: fuzzy-logic-toolkit/inst/
## Filename: addrule.m
## Last-Modified: 13 Jun 2024
function fis = addrule (fis, rule_matrix)
## If the caller did not supply 2 argument values with the correct
## types, print an error message and halt.
if (nargin != 2)
error ("addrule requires 2 arguments\n");
elseif (!is_fis (fis))
error ("addrule's first argument must be an FIS structure\n");
elseif (!is_real_matrix (rule_matrix))
error ("addrule's second argument must be a matrix of real numbers\n");
endif
## For each row in the rule_matrix, create a new rule struct and
## update the FIS structure.
num_inputs = columns (fis.input);
num_outputs = columns (fis.output);
for i = 1 : rows (rule_matrix)
antecedent = rule_matrix(i, 1 : num_inputs);
consequent = rule_matrix(i, ...
(num_inputs+1) : (num_inputs+num_outputs));
weight = rule_matrix(i, num_inputs + num_outputs + 1);
connection = rule_matrix(i, num_inputs + num_outputs + 2);
new_rules(i) = struct ('antecedent', antecedent, ...
'consequent', consequent, ...
'weight', weight, ...
'connection', connection);
endfor
if (length (fis.rule) == 0)
fis.rule = new_rules;
else
fis.rule = [fis.rule, new_rules];
endif
endfunction
%!shared fis
%! fis = readfis ('mamdani_tip_calculator.fis');
%!test
%! fis = addrule(fis, [1 2 2 1 1 1]);
%! assert(fis.rule(5).antecedent, [1 2]);
## Test input validation
%!error <addrule requires 2 arguments>
%! addrule()
%!error <addrule requires 2 arguments>
%! addrule(1)
%!error <addrule: function called with too many inputs>
%! addrule(1, 2, 3)
%!error <addrule's first argument must be an FIS structure>
%! addrule(1, 2)
%!error <addrule's second argument must be a matrix of real numbers>
%! addrule(fis, 2j)
|