1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{retval} =} drastic_product (@var{x})
## @deftypefnx {Function File} {@var{retval} =} drastic_product (@var{x}, @var{y})
##
## Return the drastic product of the input.
##
## The drastic product of two real scalars x and y is:
##
## @verbatim
## min (x, y) if max (x, y) == 1
## 0 otherwise
## @end verbatim
##
## For one vector argument, apply the drastic product to all of the elements
## of the vector. (The drastic product is associative.) For one
## two-dimensional matrix argument, return a vector of the drastic product
## of each column.
##
## For two vectors or matrices of identical dimensions, or for one scalar and
## one vector or matrix argument, return the pairwise drastic product.
##
## @seealso{algebraic_product, algebraic_sum, bounded_difference, bounded_sum, drastic_sum, einstein_product, einstein_sum, hamacher_product, hamacher_sum}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy drastic_product
## Directory: fuzzy-logic-toolkit/inst/
## Filename: drastic_product.m
## Last-Modified: 26 Jul 2024
function retval = drastic_product (x, y = 0)
if (nargin == 0 || nargin > 2 ||
!is_real_matrix (x) || !is_real_matrix (y))
error ("invalid arguments to function drastic_product\n");
elseif (nargin == 1)
if (isvector (x))
retval = vector_arg (x);
elseif (ndims (x) == 2)
retval = matrix_arg (x);
else
error ("invalid arguments to function drastic_product\n");
endif
elseif (nargin == 2)
if (isequal (size (x), size (y)))
retval = arrayfun (@scalar_args, x, y);
elseif (isscalar (x) && ismatrix (y))
x = x * ones (size (y));
retval = arrayfun (@scalar_args, x, y);
elseif (ismatrix (x) && isscalar (y))
y = y * ones (size (x));
retval = arrayfun (@scalar_args, x, y);
else
error ("invalid arguments to function drastic_product\n");
endif
endif
endfunction
function retval = scalar_args (x, y)
if (max (x, y) == 1)
retval = min (x, y);
else
retval = 0;
endif
endfunction
function retval = vector_arg (x)
if (isempty (x))
retval = 1;
elseif (max (x) == 1)
retval = min (x);
else
retval = 0;
endif
endfunction
function retval = matrix_arg (x)
num_cols = columns (x);
retval = zeros (1, num_cols);
for i = 1 : num_cols
retval(i) = vector_arg (x(:, i));
endfor
endfunction
%!test
%! x = [0.5 0.2];
%! z = drastic_product(x);
%! assert(z, 0);
%!test
%! x = [0.5 0.2 0.3 1];
%! y = [1 0 0.2 0.3];
%! z = drastic_product(x, y);
%! assert(z, [0.5 0 0 0.3]);
## Test input validation
%!error <invalid arguments to function drastic_product>
%! drastic_product()
%!error <drastic_product: function called with too many inputs>
%! drastic_product(1, 2, 3)
%!error <invalid arguments to function drastic_product>
%! drastic_product(2j)
%!error <invalid arguments to function drastic_product>
%! drastic_product(1, 2j)
%!error <invalid arguments to function drastic_product>
%! drastic_product([1 2j])
%!error <invalid arguments to function drastic_product>
%! drastic_product([1 2], [1 2 3])
%!error <invalid arguments to function drastic_product>
%! drastic_product([1 2], [1 2; 3 4])
%!error <invalid arguments to function drastic_product>
%! drastic_product(0:100, [])
|