1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} dsigmf (@var{x}, @var{params})
## @deftypefnx {Function File} {@var{y} =} dsigmf (@var{[x1 x2 ... xn]}, @var{[a1 c1 a2 c2]})
##
## For a given domain @var{x} and parameters @var{params} (or
## @var{[a1 c1 a2 c2]}), return the corresponding @var{y} values for the
## difference between two sigmoidal membership functions.
##
## The argument @var{x} must be a real number or a non-empty list of strictly
## increasing real numbers, and @var{a1}, @var{c1}, @var{a2}, and @var{c2} must
## be real numbers. This membership function satisfies the equation:
##
## @verbatim
## f(x) = 1/(1 + exp(-a1*(x - c1))) - 1/(1 + exp(-a2*(x - c2)))
## @end verbatim
##
## and in addition, is bounded above and below by 1 and 0 (regardless of the
## value given by the formula above).
##
## If the parameters @var{a1} and @var{a2} are positive and @var{c1} and
## @var{c2} are far enough apart with @var{c1} < @var{c2}, then:
##
## @verbatim
## (a1)/4 ~ the rising slope at c1
## c1 ~ the left inflection point
## (-a2)/4 ~ the falling slope at c2
## c2 ~ the right inflection point
## @end verbatim
##
## and at each inflection point, the value of the function is about 0.5:
##
## @verbatim
## f(c1) ~ f(c2) ~ 0.5.
## @end verbatim
##
## Here, the symbol ~ means "approximately equal".
##
## To run the demonstration code, type "@t{demo dsigmf}" (without the quotation
## marks) at the Octave prompt.
##
## @seealso{gauss2mf, gaussmf, gbellmf, pimf, psigmf, sigmf, smf, trapmf, trimf, zmf}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy membership sigmoidal
## Directory: fuzzy-logic-toolkit/inst/
## Filename: dsigmf.m
## Last-Modified: 26 Jul 2024
function y = dsigmf (x, params)
## If the caller did not supply 2 argument values with the correct
## types, print an error message and halt.
if (nargin != 2)
error ("dsigmf requires 2 arguments\n");
elseif (!is_domain (x))
error ("dsigmf's first argument must be a valid domain\n");
elseif (!are_mf_params ('dsigmf', params))
error ("dsigmf's second argument must be a parameter vector\n");
endif
## Calculate and return the y values of the membership function on the
## domain x.
a1 = params(1);
c1 = params(2);
a2 = params(3);
c2 = params(4);
y_val = @(x_val) max (0, ...
min (1, 1 / (1 + exp (-a1 * (x_val - c1))) - ...
1 / (1 + exp (-a2 * (x_val - c2)))));
y = arrayfun (y_val, x);
endfunction
%!demo
%! x = 0:100;
%! params = [0.5 20 0.3 60];
%! y1 = dsigmf(x, params);
%! params = [0.3 20 0.2 60];
%! y2 = dsigmf(x, params);
%! params = [0.2 20 0.1 60];
%! y3 = dsigmf(x, params);
%! figure('NumberTitle', 'off', 'Name', 'dsigmf demo');
%! plot(x, y1, 'r;params = [0.5 20 0.3 60];', 'LineWidth', 2)
%! hold on;
%! plot(x, y2, 'b;params = [0.3 20 0.2 60];', 'LineWidth', 2)
%! hold on;
%! plot(x, y3, 'g;params = [0.2 20 0.1 60];', 'LineWidth', 2)
%! ylim([-0.1 1.1]);
%! xlabel('Crisp Input Value', 'FontWeight', 'bold');
%! ylabel('Degree of Membership', 'FontWeight', 'bold');
%! grid;
%!test
%! x = 0:10;
%! params = [5 2 3 6];
%! y = [4.5383e-05 6.6925e-03 0.5000 0.9932 0.9975 0.9526 ...
%! 0.5000 0.047426 2.4726e-03 1.2339e-04 6.1442e-06];
%! z = dsigmf(x, params);
%! assert(z, y, 1e-4);
## Test input validation
%!error <dsigmf requires 2 arguments>
%! dsigmf()
%!error <dsigmf requires 2 arguments>
%! dsigmf(1)
%!error <dsigmf's first argument must be a valid domain>
%! dsigmf([1 0], 2)
%!error <dsigmf's second argument must be a parameter vector>
%! dsigmf(1, 2)
%!error <dsigmf: function called with too many inputs>
%! dsigmf(1, 2, 3)
%!error <dsigmf's second argument must be a parameter vector>
%! dsigmf(0:100, [])
%!error <dsigmf's second argument must be a parameter vector>
%! dsigmf(0:100, [30])
%!error <dsigmf's second argument must be a parameter vector>
%! dsigmf(0:100, [2 3])
%!error <dsigmf's second argument must be a parameter vector>
%! dsigmf(0:100, [90 80 30])
%!error <dsigmf's second argument must be a parameter vector>
%! dsigmf(0:100, 'abc')
|