File: einstein_sum.m

package info (click to toggle)
octave-fuzzy-logic-toolkit 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: makefile: 147
file content (121 lines) | stat: -rw-r--r-- 4,005 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{retval} =} einstein_sum (@var{x})
## @deftypefnx {Function File} {@var{retval} =} einstein_sum (@var{x}, @var{y})
##
## Return the Einstein sum of the input.
## The Einstein sum of two real scalars x and y is: (x + y) / (1 + x * y)
##
## For one vector argument, apply the Einstein sum to all of the elements
## of the vector. (The Einstein sum is associative.) For one
## two-dimensional matrix argument, return a vector of the Einstein sum
## of each column.
##
## For two vectors or matrices of identical dimensions, or for one scalar and
## one vector or matrix argument, return the pairwise Einstein sum.
##
## @seealso{algebraic_product, algebraic_sum, bounded_difference, bounded_sum, drastic_product, drastic_sum, einstein_product, hamacher_product, hamacher_sum}
## @end deftypefn

## Author:        L. Markowsky
## Keywords:      fuzzy-logic-toolkit fuzzy einstein_sum
## Directory:     fuzzy-logic-toolkit/inst/
## Filename:      einstein_sum.m
## Last-Modified: 26 Jul 2024

function retval = einstein_sum (x, y = 0)
  if (nargin == 0 || nargin > 2 ||
      !is_real_matrix (x) || !is_real_matrix (y))
    error ("invalid arguments to function einstein_sum\n");

  elseif (nargin == 1)
    if (isvector (x))
      retval = vector_arg (x);
    elseif (ndims (x) == 2)
      retval = matrix_arg (x);
    else
      error ("invalid arguments to function einstein_sum\n");
    endif

  elseif (nargin == 2)
    if (isequal (size (x), size (y)))
      retval = arrayfun (@scalar_args, x, y);
    elseif (isscalar (x) && ismatrix (y))
      x = x * ones (size (y));
      retval = arrayfun (@scalar_args, x, y);
    elseif (ismatrix (x) && isscalar (y))
      y = y * ones (size (x));
      retval = arrayfun (@scalar_args, x, y);
    else
      error ("invalid arguments to function einstein_sum\n");
    endif
  endif
endfunction

function retval = scalar_args (x, y)
  retval = (x + y) / (1 + x * y);
endfunction

function retval = vector_arg (real_vector)
  x = 0;
  for i = 1 : length (real_vector)
    y = real_vector(i);
    x = (x + y) / (1 + x * y);
  endfor
  retval = x;
endfunction

function retval = matrix_arg (x)
  num_cols = columns (x);
  retval = zeros (1, num_cols);
  for i = 1 : num_cols
    retval(i) = vector_arg (x(:, i));
  endfor
endfunction

%!test
%! x = [5 3];
%! z = einstein_sum(x);
%! assert(z, 0.5000);

%!test
%! x = [5 2 3 6];
%! y = [-1 1 2 3];
%! z = einstein_sum(x, y);
%! assert(z, [-1.000 1.000 0.7143 0.4737], 1e-4);

## Test input validation
%!error <invalid arguments to function einstein_sum>
%! einstein_sum()
%!error <invalid arguments to function einstein_sum>
%! einstein_sum(2j)
%!error <invalid arguments to function einstein_sum>
%! einstein_sum(1, 2j)
%!error <invalid arguments to function einstein_sum>
%! einstein_sum([1 2j])
%!error <einstein_sum: function called with too many inputs>
%! einstein_sum(1, 2, 3)
%!error <invalid arguments to function einstein_sum>
%! einstein_sum([1 2], [1 2 3])
%!error <invalid arguments to function einstein_sum>
%! einstein_sum([1 2], [1 2; 3 4])
%!error <invalid arguments to function einstein_sum>
%! einstein_sum(0:100, [])