File: evalfis.m

package info (click to toggle)
octave-fuzzy-logic-toolkit 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: makefile: 147
file content (260 lines) | stat: -rw-r--r-- 11,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{output} =} evalfis (@var{user_input}, @var{fis})
## @deftypefnx {Function File} {@var{output} =} evalfis (@var{user_input}, @var{fis}, @var{num_points})
## @deftypefnx {Function File} {[@var{output}, @var{rule_input}, @var{rule_output}, @var{fuzzy_output}] =} evalfis (@var{user_input}, @var{fis})
## @deftypefnx {Function File} {[@var{output}, @var{rule_input}, @var{rule_output}, @var{fuzzy_output}] =} evalfis (@var{user_input}, @var{fis}, @var{num_points})
##
## Return the crisp output(s) of an FIS for each row in a matrix of crisp input
## values.
## Also, for the last row of @var{user_input}, return the intermediate results:
##
## @multitable @columnfractions .25 .65
## @headitem Intermediate Result @tab Value Returned
## @item @var{rule_input}
## @tab  a matrix of the degree to which each FIS rule matches each
##       FIS input variable
## @item @var{rule_output}
## @tab  a matrix of the fuzzy output for each (rule, FIS output) pair
## @item @var{fuzzy_output}
## @tab  a matrix of the aggregated output for each FIS output variable
## @end multitable
## @sp 1
## The optional argument @var{num_points} specifies the number of points over
## which to evaluate the fuzzy values. The default value of @var{num_points} is
## 101.
##
## @strong{Argument @var{user_input}:}
## @var{user_input} is a matrix of crisp input values. Each row 
## represents one set of crisp FIS input values. For an FIS that has N inputs,
## an input matrix of z sets of input values will have the form:
##
## @verbatim
##   [[input_11 input_12 ... input_1N]   <-- 1st row is 1st set of inputs
##    [input_21 input_22 ... input_2N]   <-- 2nd row is 2nd set of inputs
##    [             ...              ]                  ...
##    [input_z1 input_z2 ... input_zN]]  <-- zth row is zth set of inputs
## @end verbatim
##
## @strong{Return value @var{output}:}
## @var{output} is a matrix of crisp output values. Each row represents
## the set of crisp FIS output values for the corresponding row of
## @var{user_input}. For an FIS that has M outputs, an @var{output} matrix
## corresponding to the preceding input matrix will have the form:
##
## @verbatim
##   [[output_11 output_12 ... output_1M]   <-- 1st row is 1st set of outputs
##    [output_21 output_22 ... output_2M]   <-- 2nd row is 2nd set of outputs
##    [               ...               ]                  ...
##    [output_z1 output_z2 ... output_zM]]  <-- zth row is zth set of outputs
## @end verbatim
##
## @strong{The intermediate result @var{rule_input}:}
## The matching degree for each (rule, input value) pair is specified by the
## @var{rule_input} matrix. For an FIS that has Q rules and N input variables,
## the matrix will have the form:
## @verbatim
##            in_1  in_2 ...  in_N
##   rule_1 [[mu_11 mu_12 ... mu_1N]
##   rule_2  [mu_21 mu_22 ... mu_2N]
##           [            ...      ]
##   rule_Q  [mu_Q1 mu_Q2 ... mu_QN]]
## @end verbatim
##
## @strong{Evaluation of hedges and "not":}
## Each element of each FIS rule antecedent and consequent indicates the
## corresponding membership function, hedge, and whether or not "not" should
## be applied to the result. The index of the membership function to be used is
## given by the positive whole number portion of the antecedent/consequent
## vector entry, the hedge is given by the fractional portion (if any), and
## "not" is indicated by a minus sign. A "0" as the integer portion in any
## position in the rule indicates that the corresponding FIS input or output
## variable is omitted from the rule.
##
## For custom hedges and the four built-in hedges "somewhat," "very,"
## "extremely," and "very very," the membership function value (without the
## hedge or "not") is raised to the power corresponding to the hedge. All
## hedges are rounded to 2 digits.
##
## For example, if "mu(x)" denotes the matching degree of the input to the
## corresponding membership function without a hedge or "not," then the final
## matching degree recorded in @var{rule_input} will be computed by applying
## the hedge and "not" in two steps. First, the hedge is applied:
##
## @verbatim
##   (fraction == .05) <=>  somewhat x       <=>  mu(x)^0.5  <=>  sqrt(mu(x))
##   (fraction == .20) <=>  very x           <=>  mu(x)^2    <=>  sqr(mu(x))
##   (fraction == .30) <=>  extremely x      <=>  mu(x)^3    <=>  cube(mu(x))
##   (fraction == .40) <=>  very very x      <=>  mu(x)^4
##   (fraction == .dd) <=>  <custom hedge> x <=>  mu(x)^(dd/10)
## @end verbatim
##
## After applying the appropriate hedge, "not" is calculated by:
##
## @verbatim
##   minus sign present           <=> not x         <=> 1 - mu(x)
##   minus sign and hedge present <=> not <hedge> x <=> 1 - mu(x)^(dd/10)
## @end verbatim
##
## Hedges and "not" in the consequent are handled similarly.
##
## @strong{The intermediate result @var{rule_output}:}
## For either a Mamdani-type FIS (that is, an FIS that does not have constant or
## linear output membership functions) or a Sugeno-type FIS (that is, an FIS
## that has only constant and linear output membership functions),
## @var{rule_output} specifies the fuzzy output for each (rule, FIS output) pair.
## The format of rule_output depends on the FIS type.
##
## For a Mamdani-type FIS, @var{rule_output} is a @var{num_points} x (Q * M)
## matrix, where Q is the number of rules and M is the number of FIS output
## variables. Each column of this matrix gives the y-values of the fuzzy
## output for a single (rule, FIS output) pair.
##
## @verbatim
##                     Q cols            Q cols              Q cols 
##                ---------------   ---------------     ---------------
##                out_1 ... out_1   out_2 ... out_2 ... out_M ... out_M
##            1 [[                                                     ]
##            2  [                                                     ]
##           ... [                                                     ]
##   num_points  [                                                     ]]
## @end verbatim
##
## For a Sugeno-type FIS, @var{rule_output} is a 2 x (Q * M) matrix.
## Each column of this matrix gives the (location, height) pair of the
## singleton output for a single (rule, FIS output) pair.
##
## @verbatim
##                   Q cols            Q cols                  Q cols 
##              ---------------   ---------------         ---------------
##              out_1 ... out_1   out_2 ... out_2   ...   out_M ... out_M
##   location [[                                                         ]
##     height  [                                                         ]]
## @end verbatim
##
## @strong{The intermediate result @var{fuzzy_output}:}
## The format of @var{fuzzy_output} depends on the FIS type ('mamdani' or
## 'sugeno').
##
## For either a Mamdani-type FIS or a Sugeno-type FIS, @var{fuzzy_output}
## specifies the aggregated fuzzy output for each FIS output.
##
## For a Mamdani-type FIS, the aggregated @var{fuzzy_output} is a
## @var{num_points} x M matrix. Each column of this matrix gives the y-values
## of the fuzzy output for a single FIS output, aggregated over all rules.
##
## @verbatim
##                out_1  out_2  ...  out_M
##            1 [[                        ]
##            2  [                        ]
##           ... [                        ]
##   num_points  [                        ]]
## @end verbatim
##
## For a Sugeno-type FIS, the aggregated output for each FIS output is a 2 x L
## matrix, where L is the number of distinct singleton locations in the
## @var{rule_output} for that FIS output:
##
## @verbatim
##              singleton_1  singleton_2 ... singleton_L
##   location [[                                        ]
##     height  [                                        ]]
## @end verbatim
##
## Then @var{fuzzy_output} is a vector of M structures, each of which has an index and
## one of these matrices.
##
## @strong{Examples:}
## Five examples of using evalfis are shown in:
## @itemize @bullet
## @item
## heart_disease_demo_2.m
## @item
## investment_portfolio_demo.m
## @item
## linear_tip_demo.m
## @item
## mamdani_tip_demo.m
## @item
## sugeno_tip_demo.m
## @end itemize
##
## @seealso{cubic_approx_demo, heart_disease_demo_1, heart_disease_demo_2, investment_portfolio_demo, linear_tip_demo, mamdani_tip_demo, sugeno_tip_demo}
## @end deftypefn

## Author:        L. Markowsky
## Keywords:      fuzzy-logic-toolkit fuzzy inference system fis
## Directory:     fuzzy-logic-toolkit/inst/
## Filename:      evalfis.m
## Last-Modified: 13 Jun 2024

function [output, rule_input, rule_output, fuzzy_output] = ...
           evalfis (user_input, fis, num_points = 101)

  ## If evalfis was called with an incorrect number of arguments, or
  ## the arguments do not have the correct type, print an error message
  ## and halt.

  if ((nargin != 2) && (nargin != 3))
    error ("evalfis requires 2 or 3 arguments\n");
  elseif (!is_fis (fis))
    error ("evalfis's second argument must be an FIS structure\n");
  elseif (!is_input_matrix (user_input, fis))
    error ("evalfis's 1st argument must be a matrix of input values\n");
  elseif (!is_pos_int (num_points))
    error ("evalfis's third argument must be a positive integer\n");
  endif

  ## Call a private function to compute the output.
  ## (The private function is also called by gensurf.)

  [output, rule_input, rule_output, fuzzy_output] = ...
    evalfis_private (user_input, fis, num_points);

endfunction

%!shared fis, food_service
%! fis = readfis ('sugeno_tip_calculator.fis');
%! food_service = [1 1; 5 5; 10 10; 4 6; 6 4; 7 4];

%!test
%! tip = evalfis (food_service, fis, 1001);
%! expected_result = ...
%!   [10.000   10.000   12.500
%!    10.868   13.681   19.138
%!    17.500   17.500   20.000
%!    10.604   14.208   19.452
%!    10.427   13.687   19.033
%!    10.471   14.358   19.353];
%! assert(tip, expected_result, 1e-3);

## Test input validation
%!error <evalfis requires 2 or 3 arguments>
%! evalfis()
%!error <evalfis requires 2 or 3 arguments>
%! evalfis(1)
%!error <evalfis: function called with too many inputs>
%! evalfis(1, 2, 3, 4)
%!error <evalfis's second argument must be an FIS structure>
%! evalfis(food_service, 2, 3)
%!error <evalfis's 1st argument must be a matrix of input values>
%! evalfis(0, fis, 3)
%!error <evalfis's third argument must be a positive integer>
%! evalfis(food_service, fis, -3)