1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{output} =} evalfis (@var{user_input}, @var{fis})
## @deftypefnx {Function File} {@var{output} =} evalfis (@var{user_input}, @var{fis}, @var{num_points})
## @deftypefnx {Function File} {[@var{output}, @var{rule_input}, @var{rule_output}, @var{fuzzy_output}] =} evalfis (@var{user_input}, @var{fis})
## @deftypefnx {Function File} {[@var{output}, @var{rule_input}, @var{rule_output}, @var{fuzzy_output}] =} evalfis (@var{user_input}, @var{fis}, @var{num_points})
##
## Return the crisp output(s) of an FIS for each row in a matrix of crisp input
## values.
## Also, for the last row of @var{user_input}, return the intermediate results:
##
## @multitable @columnfractions .25 .65
## @headitem Intermediate Result @tab Value Returned
## @item @var{rule_input}
## @tab a matrix of the degree to which each FIS rule matches each
## FIS input variable
## @item @var{rule_output}
## @tab a matrix of the fuzzy output for each (rule, FIS output) pair
## @item @var{fuzzy_output}
## @tab a matrix of the aggregated output for each FIS output variable
## @end multitable
## @sp 1
## The optional argument @var{num_points} specifies the number of points over
## which to evaluate the fuzzy values. The default value of @var{num_points} is
## 101.
##
## @strong{Argument @var{user_input}:}
## @var{user_input} is a matrix of crisp input values. Each row
## represents one set of crisp FIS input values. For an FIS that has N inputs,
## an input matrix of z sets of input values will have the form:
##
## @verbatim
## [[input_11 input_12 ... input_1N] <-- 1st row is 1st set of inputs
## [input_21 input_22 ... input_2N] <-- 2nd row is 2nd set of inputs
## [ ... ] ...
## [input_z1 input_z2 ... input_zN]] <-- zth row is zth set of inputs
## @end verbatim
##
## @strong{Return value @var{output}:}
## @var{output} is a matrix of crisp output values. Each row represents
## the set of crisp FIS output values for the corresponding row of
## @var{user_input}. For an FIS that has M outputs, an @var{output} matrix
## corresponding to the preceding input matrix will have the form:
##
## @verbatim
## [[output_11 output_12 ... output_1M] <-- 1st row is 1st set of outputs
## [output_21 output_22 ... output_2M] <-- 2nd row is 2nd set of outputs
## [ ... ] ...
## [output_z1 output_z2 ... output_zM]] <-- zth row is zth set of outputs
## @end verbatim
##
## @strong{The intermediate result @var{rule_input}:}
## The matching degree for each (rule, input value) pair is specified by the
## @var{rule_input} matrix. For an FIS that has Q rules and N input variables,
## the matrix will have the form:
## @verbatim
## in_1 in_2 ... in_N
## rule_1 [[mu_11 mu_12 ... mu_1N]
## rule_2 [mu_21 mu_22 ... mu_2N]
## [ ... ]
## rule_Q [mu_Q1 mu_Q2 ... mu_QN]]
## @end verbatim
##
## @strong{Evaluation of hedges and "not":}
## Each element of each FIS rule antecedent and consequent indicates the
## corresponding membership function, hedge, and whether or not "not" should
## be applied to the result. The index of the membership function to be used is
## given by the positive whole number portion of the antecedent/consequent
## vector entry, the hedge is given by the fractional portion (if any), and
## "not" is indicated by a minus sign. A "0" as the integer portion in any
## position in the rule indicates that the corresponding FIS input or output
## variable is omitted from the rule.
##
## For custom hedges and the four built-in hedges "somewhat," "very,"
## "extremely," and "very very," the membership function value (without the
## hedge or "not") is raised to the power corresponding to the hedge. All
## hedges are rounded to 2 digits.
##
## For example, if "mu(x)" denotes the matching degree of the input to the
## corresponding membership function without a hedge or "not," then the final
## matching degree recorded in @var{rule_input} will be computed by applying
## the hedge and "not" in two steps. First, the hedge is applied:
##
## @verbatim
## (fraction == .05) <=> somewhat x <=> mu(x)^0.5 <=> sqrt(mu(x))
## (fraction == .20) <=> very x <=> mu(x)^2 <=> sqr(mu(x))
## (fraction == .30) <=> extremely x <=> mu(x)^3 <=> cube(mu(x))
## (fraction == .40) <=> very very x <=> mu(x)^4
## (fraction == .dd) <=> <custom hedge> x <=> mu(x)^(dd/10)
## @end verbatim
##
## After applying the appropriate hedge, "not" is calculated by:
##
## @verbatim
## minus sign present <=> not x <=> 1 - mu(x)
## minus sign and hedge present <=> not <hedge> x <=> 1 - mu(x)^(dd/10)
## @end verbatim
##
## Hedges and "not" in the consequent are handled similarly.
##
## @strong{The intermediate result @var{rule_output}:}
## For either a Mamdani-type FIS (that is, an FIS that does not have constant or
## linear output membership functions) or a Sugeno-type FIS (that is, an FIS
## that has only constant and linear output membership functions),
## @var{rule_output} specifies the fuzzy output for each (rule, FIS output) pair.
## The format of rule_output depends on the FIS type.
##
## For a Mamdani-type FIS, @var{rule_output} is a @var{num_points} x (Q * M)
## matrix, where Q is the number of rules and M is the number of FIS output
## variables. Each column of this matrix gives the y-values of the fuzzy
## output for a single (rule, FIS output) pair.
##
## @verbatim
## Q cols Q cols Q cols
## --------------- --------------- ---------------
## out_1 ... out_1 out_2 ... out_2 ... out_M ... out_M
## 1 [[ ]
## 2 [ ]
## ... [ ]
## num_points [ ]]
## @end verbatim
##
## For a Sugeno-type FIS, @var{rule_output} is a 2 x (Q * M) matrix.
## Each column of this matrix gives the (location, height) pair of the
## singleton output for a single (rule, FIS output) pair.
##
## @verbatim
## Q cols Q cols Q cols
## --------------- --------------- ---------------
## out_1 ... out_1 out_2 ... out_2 ... out_M ... out_M
## location [[ ]
## height [ ]]
## @end verbatim
##
## @strong{The intermediate result @var{fuzzy_output}:}
## The format of @var{fuzzy_output} depends on the FIS type ('mamdani' or
## 'sugeno').
##
## For either a Mamdani-type FIS or a Sugeno-type FIS, @var{fuzzy_output}
## specifies the aggregated fuzzy output for each FIS output.
##
## For a Mamdani-type FIS, the aggregated @var{fuzzy_output} is a
## @var{num_points} x M matrix. Each column of this matrix gives the y-values
## of the fuzzy output for a single FIS output, aggregated over all rules.
##
## @verbatim
## out_1 out_2 ... out_M
## 1 [[ ]
## 2 [ ]
## ... [ ]
## num_points [ ]]
## @end verbatim
##
## For a Sugeno-type FIS, the aggregated output for each FIS output is a 2 x L
## matrix, where L is the number of distinct singleton locations in the
## @var{rule_output} for that FIS output:
##
## @verbatim
## singleton_1 singleton_2 ... singleton_L
## location [[ ]
## height [ ]]
## @end verbatim
##
## Then @var{fuzzy_output} is a vector of M structures, each of which has an index and
## one of these matrices.
##
## @strong{Examples:}
## Five examples of using evalfis are shown in:
## @itemize @bullet
## @item
## heart_disease_demo_2.m
## @item
## investment_portfolio_demo.m
## @item
## linear_tip_demo.m
## @item
## mamdani_tip_demo.m
## @item
## sugeno_tip_demo.m
## @end itemize
##
## @seealso{cubic_approx_demo, heart_disease_demo_1, heart_disease_demo_2, investment_portfolio_demo, linear_tip_demo, mamdani_tip_demo, sugeno_tip_demo}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy inference system fis
## Directory: fuzzy-logic-toolkit/inst/
## Filename: evalfis.m
## Last-Modified: 13 Jun 2024
function [output, rule_input, rule_output, fuzzy_output] = ...
evalfis (user_input, fis, num_points = 101)
## If evalfis was called with an incorrect number of arguments, or
## the arguments do not have the correct type, print an error message
## and halt.
if ((nargin != 2) && (nargin != 3))
error ("evalfis requires 2 or 3 arguments\n");
elseif (!is_fis (fis))
error ("evalfis's second argument must be an FIS structure\n");
elseif (!is_input_matrix (user_input, fis))
error ("evalfis's 1st argument must be a matrix of input values\n");
elseif (!is_pos_int (num_points))
error ("evalfis's third argument must be a positive integer\n");
endif
## Call a private function to compute the output.
## (The private function is also called by gensurf.)
[output, rule_input, rule_output, fuzzy_output] = ...
evalfis_private (user_input, fis, num_points);
endfunction
%!shared fis, food_service
%! fis = readfis ('sugeno_tip_calculator.fis');
%! food_service = [1 1; 5 5; 10 10; 4 6; 6 4; 7 4];
%!test
%! tip = evalfis (food_service, fis, 1001);
%! expected_result = ...
%! [10.000 10.000 12.500
%! 10.868 13.681 19.138
%! 17.500 17.500 20.000
%! 10.604 14.208 19.452
%! 10.427 13.687 19.033
%! 10.471 14.358 19.353];
%! assert(tip, expected_result, 1e-3);
## Test input validation
%!error <evalfis requires 2 or 3 arguments>
%! evalfis()
%!error <evalfis requires 2 or 3 arguments>
%! evalfis(1)
%!error <evalfis: function called with too many inputs>
%! evalfis(1, 2, 3, 4)
%!error <evalfis's second argument must be an FIS structure>
%! evalfis(food_service, 2, 3)
%!error <evalfis's 1st argument must be a matrix of input values>
%! evalfis(0, fis, 3)
%!error <evalfis's third argument must be a positive integer>
%! evalfis(food_service, fis, -3)
|