File: fcm.m

package info (click to toggle)
octave-fuzzy-logic-toolkit 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: makefile: 147
file content (364 lines) | stat: -rw-r--r-- 14,498 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{cluster_centers} =} fcm (@var{input_data}, @var{num_clusters})
## @deftypefnx {Function File} {@var{cluster_centers} =} fcm (@var{input_data}, @var{num_clusters}, @var{options})
## @deftypefnx {Function File} {@var{cluster_centers} =} fcm (@var{input_data}, @var{num_clusters}, [@var{m}, @var{max_iterations}, @var{epsilon}, @var{display_intermediate_results}])
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} fcm (@var{input_data}, @var{num_clusters})
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} fcm (@var{input_data}, @var{num_clusters}, @var{options})
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} fcm (@var{input_data}, @var{num_clusters}, [@var{m}, @var{max_iterations}, @var{epsilon}, @var{display_intermediate_results}])
##
## Using the Fuzzy C-Means algorithm, calculate and return the soft partition
## of a set of unlabeled data points.
##
## Also, if @var{display_intermediate_results} is true, display intermediate 
## results after each iteration. Note that because the initial cluster
## prototypes are randomly selected locations in the ranges determined by the
## input data, the results of this function are nondeterministic.
##
## The required arguments to fcm are:
## @itemize @w
## @item
## @var{input_data}: a matrix of input data points; each row corresponds to one point
## @item
## @var{num_clusters}: the number of clusters to form
## @end itemize
##
## The optional arguments to fcm are:
## @itemize @w
## @item
## @var{m}: the parameter (exponent) in the objective function; default = 2.0
## @item
## @var{max_iterations}: the maximum number of iterations before stopping; default = 100
## @item
## @var{epsilon}: the stopping criteria; default = 1e-5
## @item
## @var{display_intermediate_results}: if 1, display results after each iteration, and if 0, do not; default = 1
## @end itemize
##
## The default values are used if any of the optional arguments are missing or
## evaluate to NaN.
##
## The return values are:
## @itemize @w
## @item
## @var{cluster_centers}: a matrix of the cluster centers; each row corresponds to one point
## @item
## @var{soft_partition}: a constrained soft partition matrix
## @item
## @var{obj_fcn_history}: the values of the objective function after each iteration
## @end itemize
##
## Three important matrices used in the calculation are X (the input points
## to be clustered), V (the cluster centers), and Mu (the membership of each
## data point in each cluster). Each row of X and V denotes a single point,
## and Mu(i, j) denotes the membership degree of input point X(j, :) in the
## cluster having center V(i, :).
##
## X is identical to the required argument @var{input_data}; V is identical
## to the output @var{cluster_centers}; and Mu is identical to the output
## @var{soft_partition}.
##
## If n denotes the number of input points and k denotes the number of
## clusters to be formed, then X, V, and Mu have the dimensions:
##
## @verbatim
##                                     1    2   ...  #features
##                               1 [[                           ]
##    X  =  input_data       =   2  [                           ]
##                              ... [                           ]
##                               n  [                           ]]
##
##                                     1    2   ...  #features
##                               1 [[                           ]
##    V  =  cluster_centers  =   2  [                           ]
##                              ... [                           ]
##                               k  [                           ]]
##
##                                     1    2   ...   n
##                               1 [[                    ]
##    Mu  =  soft_partition  =   2  [                    ]
##                              ... [                    ]
##                               k  [                    ]]
## @end verbatim
##
## @seealso{gustafson_kessel, partition_coeff, partition_entropy, xie_beni_index}
##
## @end deftypefn

## Author:        L. Markowsky
## Keywords:      fuzzy-logic-toolkit fuzzy partition clustering
## Directory:     fuzzy-logic-toolkit/inst/
## Filename:      fcm.m
## Last-Modified: 13 Jun 2024

function [cluster_centers, soft_partition, obj_fcn_history] = ...
           fcm (input_data, num_clusters, options = [2.0, 100, 1e-5, 1])

  ## If fcm was called with an incorrect number of arguments, or the
  ## arguments do not have the correct type, print an error message
  ## and halt.

  if ((nargin != 2) && (nargin != 3))
    error ("fcm requires 2 or 3 arguments\n");
  elseif (!is_real_matrix (input_data))
    error ("fcm's first argument must be matrix of real numbers\n");
  elseif (!(is_int (num_clusters) && (num_clusters > 1)))
    error ("fcm's second argument must be an integer greater than 1\n");
  elseif (!(isreal (options) && isvector (options)))
    error ("fcm's third argument must be a vector of real numbers\n");
  endif

  ## Assign options to the more readable variable names: m,
  ## max_iterations, epsilon, and display_intermediate_results.
  ## If options are missing or NaN (not a number), use the default
  ## values.

  default_options = [2.0, 100, 1e-5, 1];

  for i = 1 : 4
    if ((length (options) < i) || ...
        isna (options(i)) || isnan (options(i)))
      options(i) = default_options(i);
    endif
  endfor

  m = options(1);
  max_iterations = options(2);
  epsilon = options(3);
  display_intermediate_results = options(4);

  ## Call a private function to compute the output.

  [cluster_centers, soft_partition, obj_fcn_history] = ...
    fcm_private (input_data, num_clusters, m, max_iterations, epsilon,
                 display_intermediate_results);
endfunction

##----------------------------------------------------------------------
## Note: This function (fcm_private) is an implementation of Figure 13.4
##       in Fuzzy Logic: Intelligence, Control and Information, by
##       J. Yen and R. Langari, Prentice Hall, 1999, page 380
##       (International Edition) and Algorithm 4.1 in Fuzzy and Neural
##       Control, by Robert Babuska, November 2009, p. 63.
##----------------------------------------------------------------------

function [V, Mu, obj_fcn_history] = ...
  fcm_private (X, k, m, max_iterations, epsilon, ...
               display_intermediate_results)

  ## Initialize the prototypes and the calculation.
  V = init_cluster_prototypes (X, k);
  obj_fcn_history = zeros (max_iterations);
  convergence_criterion = epsilon + 1;
  iteration = 0;

  ## Calculate a few numbers here to reduce redundant computation.
  k = rows (V);
  n = rows (X);
  sqr_dist = square_distance_matrix (X, V);

  ## Loop until the objective function is within tolerance or the
  ## maximum number of iterations has been reached.
  while (convergence_criterion > epsilon && ...
         ++iteration <= max_iterations)
    V_previous = V;
    Mu = update_cluster_membership (V, X, m, k, n, sqr_dist);
    Mu_m = Mu .^ m;
    V = update_cluster_prototypes (Mu_m, X, k);
    sqr_dist = square_distance_matrix (X, V);
    obj_fcn_history(iteration) = ...
      compute_cluster_obj_fcn (Mu_m, sqr_dist);
    if (display_intermediate_results)
      printf ("Iteration count = %d,  Objective fcn = %8.6f\n", ...
               iteration, obj_fcn_history(iteration));
    endif
    convergence_criterion = ...
      compute_cluster_convergence (V, V_previous);
  endwhile

  ## Remove extraneous entries from the tail of the objective
  ## function history.
  if (convergence_criterion <= epsilon)
    obj_fcn_history = obj_fcn_history(1 : iteration);
  endif

endfunction

##----------------------------------------------------------------------
## FCM Demo #1
##----------------------------------------------------------------------

%!demo
%! ## This demo:
%! ##    - classifies a small set of unlabeled data points using
%! ##      the Fuzzy C-Means algorithm into two fuzzy clusters
%! ##    - plots the input points together with the cluster centers
%! ##    - evaluates the quality of the resulting clusters using
%! ##      three validity measures: the partition coefficient, the
%! ##      partition entropy, and the Xie-Beni validity index
%! ##
%! ## Note: The input_data is taken from Chapter 13, Example 17 in
%! ##       Fuzzy Logic: Intelligence, Control and Information, by
%! ##       J. Yen and R. Langari, Prentice Hall, 1999, page 381
%! ##       (International Edition). 
%!
%! ## Use fcm to classify the input_data.
%! input_data = [2 12; 4 9; 7 13; 11 5; 12 7; 14 4];
%! number_of_clusters = 2;
%! [cluster_centers, soft_partition, obj_fcn_history] = ...
%!   fcm (input_data, number_of_clusters)
%! 
%! ## Plot the data points as small blue x's.
%! figure ('NumberTitle', 'off', 'Name', 'FCM Demo 1');
%! for i = 1 : rows (input_data)
%!   plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
%!         'marker', 'x', 'color', 'b');
%!   hold on;
%! endfor
%!
%! ## Plot the cluster centers as larger red *'s.
%! for i = 1 : number_of_clusters
%!   plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
%!         'LineWidth', 4, 'marker', '*', 'color', 'r');
%!   hold on;
%! endfor
%!
%! ## Make the figure look a little better:
%! ##    - scale and label the axes
%! ##    - show gridlines
%! xlim ([0 15]);
%! ylim ([0 15]);
%! xlabel ('Feature 1');
%! ylabel ('Feature 2');
%! grid
%! hold
%! 
%! ## Calculate and print the three validity measures.
%! printf ("Partition Coefficient: %f\n", ...
%!         partition_coeff (soft_partition));
%! printf ("Partition Entropy (with a = 2): %f\n", ...
%!         partition_entropy (soft_partition, 2));
%! printf ("Xie-Beni Index: %f\n\n", ...
%!         xie_beni_index (input_data, cluster_centers, ...
%!         soft_partition));

##----------------------------------------------------------------------
## FCM Demo #2
##----------------------------------------------------------------------

%!demo
%! ## This demo:
%! ##    - classifies three-dimensional unlabeled data points using
%! ##      the Fuzzy C-Means algorithm into three fuzzy clusters
%! ##    - plots the input points together with the cluster centers
%! ##    - evaluates the quality of the resulting clusters using
%! ##      three validity measures: the partition coefficient, the
%! ##      partition entropy, and the Xie-Beni validity index
%! ##
%! ## Note: The input_data was selected to form three areas of
%! ##       different shapes.
%! 
%! ## Use fcm to classify the input_data.
%! input_data = [1 11 5; 1 12 6; 1 13 5; 2 11 7; 2 12 6; 2 13 7;
%!               3 11 6; 3 12 5; 3 13 7; 1 1 10; 1 3 9; 2 2 11;
%!               3 1 9; 3 3 10; 3 5 11; 4 4 9; 4 6 8; 5 5 8; 5 7 9;
%!               6 6 10; 9 10 12; 9 12 13; 9 13 14; 10 9 13; 10 13 12;
%!               11 10 14; 11 12 13; 12 6 12; 12 7 15; 12 9 15;
%!               14 6 14; 14 8 13];
%! number_of_clusters = 3;
%! [cluster_centers, soft_partition, obj_fcn_history] = ...
%!   fcm (input_data, number_of_clusters, [NaN NaN NaN 0])
%! 
%! ## Plot the data points in two dimensions (using features 1 & 2)
%! ## as small blue x's.
%! figure ('NumberTitle', 'off', 'Name', 'FCM Demo 2');
%! for i = 1 : rows (input_data)
%!   plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
%!         'marker', 'x', 'color', 'b');
%!   hold on;
%! endfor
%! 
%! ## Plot the cluster centers in two dimensions
%! ## (using features 1 & 2) as larger red *'s.
%! for i = 1 : number_of_clusters
%!   plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
%!         'LineWidth', 4, 'marker', '*', 'color', 'r');
%!   hold on;
%! endfor
%! 
%! ## Make the figure look a little better:
%! ##    - scale and label the axes
%! ##    - show gridlines
%! xlim ([0 15]);
%! ylim ([0 15]);
%! xlabel ('Feature 1');
%! ylabel ('Feature 2');
%! grid
%! hold
%! 
%! ## Plot the data points in two dimensions
%! ## (using features 1 & 3) as small blue x's.
%! figure ('NumberTitle', 'off', 'Name', 'FCM Demo 2');
%! for i = 1 : rows (input_data)
%!   plot (input_data(i, 1), input_data(i, 3), 'LineWidth', 2, ...
%!         'marker', 'x', 'color', 'b');
%!   hold on;
%! endfor
%! 
%! ## Plot the cluster centers in two dimensions
%! ## (using features 1 & 3) as larger red *'s.
%! for i = 1 : number_of_clusters
%!   plot (cluster_centers(i, 1), cluster_centers(i, 3), ...
%!         'LineWidth', 4, 'marker', '*', 'color', 'r');
%!   hold on;
%! endfor
%! 
%! ## Make the figure look a little better:
%! ##    - scale and label the axes
%! ##    - show gridlines
%! xlim ([0 15]);
%! ylim ([0 15]);
%! xlabel ('Feature 1');
%! ylabel ('Feature 3');
%! grid
%! hold
%! 
%! ## Calculate and print the three validity measures.
%! printf ("Partition Coefficient: %f\n", ...
%!         partition_coeff (soft_partition));
%! printf ("Partition Entropy (with a = 2): %f\n", ...
%!         partition_entropy (soft_partition, 2));
%! printf ("Xie-Beni Index: %f\n\n", ...
%!         xie_beni_index (input_data, cluster_centers, ...
%!         soft_partition));

## Test input validation
%!error <fcm requires 2 or 3 arguments>
%! fcm()
%!error <fcm requires 2 or 3 arguments>
%! fcm(1)
%!error <fcm: function called with too many inputs>
%! fcm(1, 2, 3, 4)
%!error <fcm's first argument must be matrix of real numbers>
%! fcm('input', 2)
%!error <fcm's second argument must be an integer greater than 1>
%! fcm(1, 0)
%!error <fcm's third argument must be a vector of real numbers>
%! fcm(1, 2, 2j)