1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} gauss2mf (@var{x}, @var{params})
## @deftypefnx {Function File} {@var{y} =} gauss2mf (@var{[x1 x2 ... xn]}, @var{[sig1 c1 sig2 c2]})
##
## For a given domain @var{x} and parameters @var{params} (or
## @var{[sig1 c1 sig2 c2]}), return the corresponding @var{y} values for the
## two-sided Gaussian composite membership function. This membership function is
## a smooth curve calculated from two Gaussian membership functions as follows:
##
## Given parameters @var{sig1}, @var{c1}, @var{sig2}, and @var{c2}, that define
## two Gaussian membership functions, let:
##
## @verbatim
## f1(x) = exp((-(x - c1)^2)/(2 * sig1^2)) if x <= c1
## 1 otherwise
##
## f2(x) = 1 if x <= c2
## exp((-(x - c2)^2)/(2 * sig2^2)) otherwise
## @end verbatim
##
## Then gauss2mf is given by:
##
## @verbatim
## f(x) = f1(x) * f2(x)
## @end verbatim
##
## The argument @var{x} must be a real number or a non-empty vector of strictly
## increasing real numbers, and @var{sig1}, @var{c1}, @var{sig2}, and @var{c2}
## must be real numbers.
## Gauss2mf always returns a continuously differentiable curve with values in
## the range [0, 1].
##
## If @var{c1} < @var{c2}, gauss2mf is a normal membership function (has a
## maximum value of 1), with the rising curve identical to that of f1(x) and a
## falling curve identical to that of f2(x), above. If @var{c1} >= @var{c2},
## gauss2mf returns a subnormal membership function (has a maximum value less
## than 1).
##
## To run the demonstration code, type "@t{demo gauss2mf}" (without the quotation
## marks) at the Octave prompt.
##
## @seealso{dsigmf, gaussmf, gbellmf, pimf, psigmf, sigmf, smf, trapmf, trimf, zmf}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy membership gaussian
## Directory: fuzzy-logic-toolkit/inst/
## Filename: gauss2mf.m
## Last-Modified: 13 Jun 2024
function y = gauss2mf (x, params)
## If the caller did not supply 2 argument values with the correct
## types, print an error message and halt.
if (nargin != 2)
error ("gauss2mf requires 2 arguments\n");
elseif (!is_domain (x))
error ("gauss2mf's first argument must be a valid domain\n");
elseif (!are_mf_params ('gauss2mf', params))
error ("gauss2mf's second argument must be a parameter vector\n");
endif
## Calculate and return the y values of the membership function on
## the domain x according to the definition of gauss2mf given in the
## comment above.
sig1 = params(1);
c1 = params(2);
sig2 = params(3);
c2 = params(4);
f1_val = @(x_val) (x_val <= c1) * ...
exp ((-(x_val - c1)^2)/(2 * sig1^2)) + ...
(x_val > c1);
f2_val = @(x_val) (x_val <= c2) + ...
(x_val > c2) * exp ((-(x_val - c2)^2)/(2 * sig2^2));
f1 = arrayfun (f1_val, x);
f2 = arrayfun (f2_val, x);
y = f1 .* f2;
endfunction
%!demo
%! x = -10:0.2:10;
%! params = [3 0 1.5 2];
%! y1 = gauss2mf(x, params);
%! params = [1.5 0 3 2];
%! y2 = gauss2mf(x, params);
%! params = [1.5 2 3 0];
%! y3 = gauss2mf(x, params);
%! figure('NumberTitle', 'off', 'Name', 'gauss2mf demo');
%! plot(x, y1, 'r;params = [3 0 1.5 2];', 'LineWidth', 2);
%! hold on ;
%! plot(x, y2, 'b;params = [1.5 0 3 2];', 'LineWidth', 2);
%! hold on ;
%! plot(x, y3, 'g;params = [1.5 2 3 0];', 'LineWidth', 2);
%! ylim([-0.1 1.1]);
%! xlabel('Crisp Input Value', 'FontWeight', 'bold');
%! ylabel('Degree of Membership', 'FontWeight', 'bold');
%! grid;
%! hold;
%!test
%! x = -10:2:10;
%! params = [3 0 1.5 2];
%! y = [3.8659e-03 0.028566 0.1353 0.4111 0.8007 1 ...
%! 1 0.4111 0.028566 3.3546e-04 6.6584e-07];
%! z = gauss2mf(x, params);
%! assert(z, y, 1e-4);
## Test input validation
%!error <gauss2mf requires 2 arguments>
%! gauss2mf()
%!error <gauss2mf requires 2 arguments>
%! gauss2mf(1)
%!error <gauss2mf: function called with too many inputs>
%! gauss2mf(1, 2, 3)
%!error <gauss2mf's first argument must be a valid domain>
%! gauss2mf([1 0], 2)
%!error <gauss2mf's second argument must be a parameter vector>
%! gauss2mf(1, 2)
%!error <gauss2mf's second argument must be a parameter vector>
%! gauss2mf(0:100, [])
%!error <gauss2mf's second argument must be a parameter vector>
%! gauss2mf(0:100, [30])
%!error <gauss2mf's second argument must be a parameter vector>
%! gauss2mf(0:100, [2 3])
%!error <gauss2mf's second argument must be a parameter vector>
%! gauss2mf(0:100, [90 80 30])
%!error <gauss2mf's second argument must be a parameter vector>
%! gauss2mf(0:100, 'abc')
|