1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} gbellmf (@var{x}, @var{params})
## @deftypefnx {Function File} {@var{y} =} gbellmf (@var{[x1 x2 ... xn]}, @var{[a b c]})
##
## For a given domain @var{x} and parameters @var{params} (or @var{[a b c]}),
## return the corresponding @var{y} values for the generalized bell-shaped
## membership function.
##
## The argument @var{x} must be a real number or a non-empty vector of strictly
## increasing real numbers, @var{a}, @var{b}, and @var{c} must be real numbers,
## @var{a} must be non-zero, and @var{b} must be an integer. This membership
## function satisfies the equation:
##
## @verbatim
## f(x) = 1/(1 + (abs((x - c)/a))^(2 * b))
## @end verbatim
##
## which always returns values in the range [0, 1].
##
## The parameters @var{a}, @var{b}, and @var{c} give:
##
## @verbatim
## a == controls the width of the curve at f(x) = 0.5;
## f(c-a) = f(c+a) = 0.5
## b == controls the slope of the curve at x = c-a and x = c+a;
## f'(c-a) = b/2a and f'(c+a) = -b/2a
## c == the center of the curve
## @end verbatim
##
## This membership function has a value of 0.5 at the two points c - a and
## c + a, and the width of the curve at f(x) == 0.5 is 2 * |a|:
##
## @verbatim
## f(c - a) == f(c + a) == 0.5
## 2 * |a| == the width of the curve at f(x) == 0.5
## @end verbatim
##
## The generalized bell-shaped membership function is continuously
## differentiable and is symmetric about the line x = c.
##
## To run the demonstration code, type "@t{demo gbellmf}" (without the quotation
## marks) at the Octave prompt.
##
## @seealso{dsigmf, gauss2mf, gaussmf, pimf, psigmf, sigmf, smf, trapmf, trimf, zmf}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy membership bell-shaped bell
## Directory: fuzzy-logic-toolkit/inst/
## Filename: gbellmf.m
## Last-Modified: 13 Jun 2024
function y = gbellmf (x, params)
## If the caller did not supply 2 argument values with the correct
## types, print an error message and halt.
if (nargin != 2)
error ("gbellmf requires 2 arguments\n");
elseif (!is_domain (x))
error ("gbellmf's first argument must be a valid domain\n");
elseif (!are_mf_params ('gbellmf', params))
error ("gbellmf's second argument must be a parameter vector\n");
endif
## Calculate and return the y values of the membership function on the
## domain x.
a = params(1);
b = params(2);
c = params(3);
y_val = @(x_val) 1 / (1 + (abs ((x_val - c)/a))^(2 * b));
y = arrayfun (y_val, x);
endfunction
%!demo
%! x = 0:255;
%! params = [20 4 100];
%! y1 = gbellmf(x, params);
%! params = [30 3 100];
%! y2 = gbellmf(x, params);
%! params = [40 2 100];
%! y3 = gbellmf(x, params);
%! figure('NumberTitle', 'off', 'Name', 'gbellmf demo');
%! plot(x, y1, 'r;params = [20 4 100];', 'LineWidth', 2)
%! hold on;
%! plot(x, y2, 'b;params = [30 3 100];', 'LineWidth', 2)
%! hold on;
%! plot(x, y3, 'g;params = [40 2 100];', 'LineWidth', 2)
%! ylim([-0.1 1.1]);
%! xlabel('Crisp Input Value', 'FontWeight', 'bold');
%! ylabel('Degree of Membership', 'FontWeight', 'bold');
%! grid;
%!test
%! x = 0:25:250;
%! params = [40 2 100];
%! y = [0.024961 0.074852 0.2906 0.8676 1 0.8676 ...
%! 0.2906 0.074852 0.024961 0.010377 5.0313e-03];
%! z = gbellmf(x, params);
%! assert(z, y, 1e-4);
## Test input validation
%!error <gbellmf requires 2 arguments>
%! gbellmf()
%!error <gbellmf requires 2 arguments>
%! gbellmf(1)
%!error <gbellmf: function called with too many inputs>
%! gbellmf(1, 2, 3)
%!error <gbellmf's first argument must be a valid domain>
%! gbellmf([1 0], 2)
%!error <gbellmf's second argument must be a parameter vector>
%! gbellmf(1, 2)
%!error <gbellmf's second argument must be a parameter vector>
%! gbellmf(0:100, [])
%!error <gbellmf's second argument must be a parameter vector>
%! gbellmf(0:100, [30])
%!error <gbellmf's second argument must be a parameter vector>
%! gbellmf(0:100, [2 3])
%!error <gbellmf's second argument must be a parameter vector>
%! gbellmf(0:100, [90 80 30 50])
%!error <gbellmf's second argument must be a parameter vector>
%! gbellmf(0:100, 'abcd')
|