1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{cluster_centers} =} gustafson_kessel (@var{input_data}, @var{num_clusters})
## @deftypefnx {Function File} {@var{cluster_centers} =} gustafson_kessel (@var{input_data}, @var{num_clusters}, @var{cluster_volume})
## @deftypefnx {Function File} {@var{cluster_centers} =} gustafson_kessel (@var{input_data}, @var{num_clusters}, @var{cluster_volume}, @var{options})
## @deftypefnx {Function File} {@var{cluster_centers} =} gustafson_kessel (@var{input_data}, @var{num_clusters}, @var{cluster_volume}, [@var{m}, @var{max_iterations}, @var{epsilon}, @var{display_intermediate_results}])
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} gustafson_kessel (@var{input_data}, @var{num_clusters})
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} gustafson_kessel (@var{input_data}, @var{num_clusters}, @var{cluster_volume})
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} gustafson_kessel (@var{input_data}, @var{num_clusters}, @var{cluster_volume}, @var{options})
## @deftypefnx {Function File} {[@var{cluster_centers}, @var{soft_partition}, @var{obj_fcn_history}] =} gustafson_kessel (@var{input_data}, @var{num_clusters}, @var{cluster_volume}, [@var{m}, @var{max_iterations}, @var{epsilon}, @var{display_intermediate_results}])
##
## Using the Gustafson-Kessel algorithm, calculate and return the soft partition
## of a set of unlabeled data points.
##
## Also, if @var{display_intermediate_results} is true, display intermediate
## results after each iteration. Note that because the initial cluster
## prototypes are randomly selected locations in the ranges determined by the
## input data, the results of this function are nondeterministic.
##
## The required arguments to gustafson_kessel are:
## @itemize @w
## @item
## @var{input_data}: a matrix of input data points; each row corresponds to one point
## @item
## @var{num_clusters}: the number of clusters to form
## @end itemize
##
## The third (optional) argument to gustafson_kessel is a vector of cluster volumes.
## If omitted, a vector of 1's will be used as the default.
##
## The fourth (optional) argument to gustafson_kessel is a vector consisting of:
## @itemize @w
## @item
## @var{m}: the parameter (exponent) in the objective function; default = 2.0
## @item
## @var{max_iterations}: the maximum number of iterations before stopping; default = 100
## @item
## @var{epsilon}: the stopping criteria; default = 1e-5
## @item
## @var{display_intermediate_results}: if 1, display results after each iteration, and if 0, do not; default = 1
## @end itemize
##
## The default values are used if any of the four elements of the vector are missing or
## evaluate to NaN.
##
## The return values are:
## @itemize @w
## @item
## @var{cluster_centers}: a matrix of the cluster centers; each row corresponds to one point
## @item
## @var{soft_partition}: a constrained soft partition matrix
## @item
## @var{obj_fcn_history}: the values of the objective function after each iteration
## @end itemize
##
## Three important matrices used in the calculation are X (the input points
## to be clustered), V (the cluster centers), and Mu (the membership of each
## data point in each cluster). Each row of X and V denotes a single point,
## and Mu(i, j) denotes the membership degree of input point X(j, :) in the
## cluster having center V(i, :).
##
## X is identical to the required argument @var{input_data}; V is identical
## to the output @var{cluster_centers}; and Mu is identical to the output
## @var{soft_partition}.
##
## If n denotes the number of input points and k denotes the number of
## clusters to be formed, then X, V, and Mu have the dimensions:
##
## @verbatim
## 1 2 ... #features
## 1 [[ ]
## X = input_data = 2 [ ]
## ... [ ]
## n [ ]]
##
## 1 2 ... #features
## 1 [[ ]
## V = cluster_centers = 2 [ ]
## ... [ ]
## k [ ]]
##
## 1 2 ... n
## 1 [[ ]
## Mu = soft_partition = 2 [ ]
## ... [ ]
## k [ ]]
## @end verbatim
##
## @seealso{fcm, partition_coeff, partition_entropy, xie_beni_index}
##
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy partition clustering
## Directory: fuzzy-logic-toolkit/inst/
## Filename: gustafson_kessel.m
## Last-Modified: 13 Jun 2024
function [cluster_centers, soft_partition, obj_fcn_history] = ...
gustafson_kessel (input_data, num_clusters, ...
cluster_volume = [], options = [2.0, 100, 1e-5, 1])
## If gustafson_kessel was called with an incorrect number of
## arguments, or the arguments do not have the correct type, print
## an error message and halt.
if ((nargin < 2) || (nargin > 4))
error ("gustafson_kessel requires 2, 3, or 4 arguments\n");
elseif (!is_real_matrix (input_data))
error ("gustafson_kessel's 1st argument must be matrix of reals\n");
elseif (!(is_int (num_clusters) && (num_clusters > 1)))
error ("gustafson_kessel's 2nd argument must be an int greater than 1\n");
elseif (!(isequal (cluster_volume, []) || ...
(isreal (cluster_volume) && isvector (cluster_volume))))
error ("gustafson_kessel's 3rd arg must be a vector of reals\n");
elseif (!(isreal (options) && isvector (options)))
error ("gustafson_kessel's 4th arg must be a vector of reals\n");
endif
## If the cluster volume matrix was not entered, create a default
## value (a vector of 1's).
if (isequal (cluster_volume, []))
cluster_volume = ones (1, num_clusters);
endif
## Assign options to the more readable variable names: m,
## max_iterations, epsilon, and display_intermediate_results.
## If options are missing or NaN (not a number), use the default
## values.
default_options = [2.0, 100, 1e-5, 1];
for i = 1 : 4
if ((length (options) < i) || ...
isna (options(i)) || isnan (options(i)))
options(i) = default_options(i);
endif
endfor
m = options(1);
max_iterations = options(2);
epsilon = options(3);
display_intermediate_results = options(4);
## Call a private function to compute the output.
[cluster_centers, soft_partition, obj_fcn_history] = ...
gustafson_kessel_private (input_data, num_clusters, ...
cluster_volume, m, max_iterations, ...
epsilon, display_intermediate_results);
endfunction
##----------------------------------------------------------------------
## Function: gustafson_kessel_private
## Purpose: Classify unlabeled data points using the Gustafson-Kessel
## algorithm.
## Note: This function (gustafson_kessel_private) is an
## implementation of Algorithm 4.2 in Fuzzy and Neural
## Control, by Robert Babuska, November 2009, p. 69.
##----------------------------------------------------------------------
function [V, Mu, obj_fcn_history] = ...
gustafson_kessel_private (X, k, cluster_volume, m, max_iterations, ...
epsilon, display_intermediate_results)
## Initialize the prototypes and the calculation.
V = init_cluster_prototypes (X, k);
obj_fcn_history = zeros (max_iterations);
convergence_criterion = epsilon + 1;
iteration = 0;
## Calculate a few numbers here to reduce redundant computation.
k = rows (V);
n = rows (X);
sqr_dist = square_distance_matrix (X, V);
## Loop until the objective function is within tolerance or the
## maximum number of iterations has been reached.
while (convergence_criterion > epsilon && ...
++iteration <= max_iterations)
V_previous = V;
Mu = update_cluster_membership (V, X, m, k, n, sqr_dist);
Mu_m = Mu .^ m;
V = update_cluster_prototypes (Mu_m, X, k);
sqr_dist = gk_square_distance_matrix (X, V, Mu_m, cluster_volume);
obj_fcn_history(iteration) = ...
compute_cluster_obj_fcn (Mu_m, sqr_dist);
if (display_intermediate_results)
printf ("Iteration count = %d, Objective fcn = %8.6f\n", ...
iteration, obj_fcn_history(iteration));
endif
convergence_criterion = ...
compute_cluster_convergence (V, V_previous);
endwhile
## Remove extraneous entries from the tail of the objective ...
## function history.
if (convergence_criterion <= epsilon)
obj_fcn_history = obj_fcn_history(1 : iteration);
endif
endfunction
##----------------------------------------------------------------------
## Function: gk_square_distance_matrix
##----------------------------------------------------------------------
function sqr_dist = gk_square_distance_matrix (X, V, Mu_m, ...
cluster_volume)
k = rows (V);
n = rows (X);
num_features = columns (X);
sqr_dist = zeros (k, n);
for i = 1 : k
Vi = V(i, :);
covariance_matrix = compute_covariance_matrix (X, V, Mu_m, i);
for j = 1 : n
Vi_to_Xj = X(j, :) - Vi;
A = cluster_volume(i) * ...
det (covariance_matrix) ^ (1.0 / num_features) * ...
inv (covariance_matrix);
sqr_dist(i, j) = sum (Vi_to_Xj .* (A * Vi_to_Xj')');
endfor
endfor
endfunction
##----------------------------------------------------------------------
## Function: compute_covariance_matrix
##----------------------------------------------------------------------
function covariance_matrix = compute_covariance_matrix (X, V, Mu_m, i)
num_features = columns (V);
n = rows (X);
num = zeros (num_features);
denom = 0.0;
Vi = V(i, :);
for j = 1 : n
Vi_to_Xj = X(j, :) - Vi;
num += Mu_m(i, j) * Vi_to_Xj' * Vi_to_Xj;
denom += Mu_m(i, j);
endfor
covariance_matrix = num / denom;
endfunction
##----------------------------------------------------------------------
## Gustafson-Kessel Demo #1
##----------------------------------------------------------------------
%!demo
%! ## This demo:
%! ## - classifies a small set of unlabeled data points using
%! ## the Gustafson-Kessel algorithm into two fuzzy clusters
%! ## - plots the input points together with the cluster centers
%! ## - evaluates the quality of the resulting clusters using
%! ## three validity measures: the partition coefficient, the
%! ## partition entropy, and the Xie-Beni validity index
%! ##
%! ## Note: The input_data is taken from Chapter 13, Example 17 in
%! ## Fuzzy Logic: Intelligence, Control and Information, by
%! ## J. Yen and R. Langari, Prentice Hall, 1999, page 381
%! ## (International Edition).
%!
%! ## Use gustafson_kessel to classify the input_data.
%! input_data = [2 12; 4 9; 7 13; 11 5; 12 7; 14 4];
%! number_of_clusters = 2;
%! [cluster_centers, soft_partition, obj_fcn_history] = ...
%! gustafson_kessel (input_data, number_of_clusters)
%!
%! ## Plot the data points as small blue x's.
%! figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 1');
%! for i = 1 : rows (input_data)
%! plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
%! 'marker', 'x', 'color', 'b');
%! hold on;
%! endfor
%!
%! ## Plot the cluster centers as larger red *'s.
%! for i = 1 : number_of_clusters
%! plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
%! 'LineWidth', 4, 'marker', '*', 'color', 'r');
%! hold on;
%! endfor
%!
%! ## Make the figure look a little better:
%! ## - scale and label the axes
%! ## - show gridlines
%! xlim ([0 15]);
%! ylim ([0 15]);
%! xlabel ('Feature 1');
%! ylabel ('Feature 2');
%! grid
%! hold
%!
%! ## Calculate and print the three validity measures.
%! printf ("Partition Coefficient: %f\n", ...
%! partition_coeff (soft_partition));
%! printf ("Partition Entropy (with a = 2): %f\n", ...
%! partition_entropy (soft_partition, 2));
%! printf ("Xie-Beni Index: %f\n\n", ...
%! xie_beni_index (input_data, cluster_centers, ...
%! soft_partition));
##----------------------------------------------------------------------
## Gustafson-Kessel Demo #2
##----------------------------------------------------------------------
%!demo
%! ## This demo:
%! ## - classifies three-dimensional unlabeled data points using
%! ## the Gustafson-Kessel algorithm into three fuzzy clusters
%! ## - plots the input points together with the cluster centers
%! ## - evaluates the quality of the resulting clusters using
%! ## three validity measures: the partition coefficient, the
%! ## partition entropy, and the Xie-Beni validity index
%! ##
%! ## Note: The input_data was selected to form three areas of
%! ## different shapes.
%!
%! ## Use gustafson_kessel to classify the input_data.
%! input_data = [1 11 5; 1 12 6; 1 13 5; 2 11 7; 2 12 6; 2 13 7;
%! 3 11 6; 3 12 5; 3 13 7; 1 1 10; 1 3 9; 2 2 11;
%! 3 1 9; 3 3 10; 3 5 11; 4 4 9; 4 6 8; 5 5 8; 5 7 9;
%! 6 6 10; 9 10 12; 9 12 13; 9 13 14; 10 9 13; 10 13 12;
%! 11 10 14; 11 12 13; 12 6 12; 12 7 15; 12 9 15;
%! 14 6 14; 14 8 13];
%! number_of_clusters = 3;
%! [cluster_centers, soft_partition, obj_fcn_history] = ...
%! gustafson_kessel (input_data, number_of_clusters, [1 1 1], ...
%! [NaN NaN NaN 0])
%!
%! ## Plot the data points in two dimensions (using features 1 & 2)
%! ## as small blue x's.
%! figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 2');
%! for i = 1 : rows (input_data)
%! plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
%! 'marker', 'x', 'color', 'b');
%! hold on;
%! endfor
%!
%! ## Plot the cluster centers in two dimensions
%! ## (using features 1 & 2) as larger red *'s.
%! for i = 1 : number_of_clusters
%! plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
%! 'LineWidth', 4, 'marker', '*', 'color', 'r');
%! hold on;
%! endfor
%!
%! ## Make the figure look a little better:
%! ## - scale and label the axes
%! ## - show gridlines
%! xlim ([0 15]);
%! ylim ([0 15]);
%! xlabel ('Feature 1');
%! ylabel ('Feature 2');
%! grid
%!
%! ## Plot the data points in two dimensions
%! ## (using features 1 & 3) as small blue x's.
%! figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 2');
%! for i = 1 : rows (input_data)
%! plot (input_data(i, 1), input_data(i, 3), 'LineWidth', 2, ...
%! 'marker', 'x', 'color', 'b');
%! hold on;
%! endfor
%!
%! ## Plot the cluster centers in two dimensions
%! ## (using features 1 & 3) as larger red *'s.
%! for i = 1 : number_of_clusters
%! plot (cluster_centers(i, 1), cluster_centers(i, 3), ...
%! 'LineWidth', 4, 'marker', '*', 'color', 'r');
%! hold on;
%! endfor
%!
%! ## Make the figure look a little better:
%! ## - scale and label the axes
%! ## - show gridlines
%! xlim ([0 15]);
%! ylim ([0 15]);
%! xlabel ('Feature 1');
%! ylabel ('Feature 3');
%! grid
%! hold
%!
%! ## Calculate and print the three validity measures.
%! printf ("Partition Coefficient: %f\n", ...
%! partition_coeff (soft_partition));
%! printf ("Partition Entropy (with a = 2): %f\n", ...
%! partition_entropy (soft_partition, 2));
%! printf ("Xie-Beni Index: %f\n\n", ...
%! xie_beni_index (input_data, cluster_centers, ...
%! soft_partition));
## Test input validation
%!error <gustafson_kessel requires 2, 3, or 4 arguments>
%! gustafson_kessel()
%!error <gustafson_kessel requires 2, 3, or 4 arguments>
%! gustafson_kessel(1)
%!error <gustafson_kessel: function called with too many inputs>
%! gustafson_kessel(1, 2, 3, 4, 5)
%!error <gustafson_kessel's 1st argument must be matrix of reals>
%! gustafson_kessel('input', 2)
%!error <gustafson_kessel's 2nd argument must be an int greater than 1>
%! gustafson_kessel(1, 0)
%!error <gustafson_kessel's 3rd arg must be a vector of reals>
%! gustafson_kessel(1, 2, 3j)
%!error <gustafson_kessel's 4th arg must be a vector of reals>
%! gustafson_kessel(1, 2, 3, 4j)
|