1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Script File} {} mamdani_tip_demo
## Demonstrate the use of the Octave Fuzzy Logic Toolkit to read and evaluate a
## Mamdani-type FIS stored in a file.
##
## The demo:
## @itemize @bullet
## @item
## reads the FIS structure from a file
## @item
## plots the input and output membership functions
## @item
## plots each of the two FIS outputs as a function of the inputs
## @item
## plots the output of the 4 individual rules for (Food-Quality, Service) = (4, 6)
## @item
## plots the aggregated fuzzy output and the crisp output for
## (Food-Quality, Service) = (4, 6)
## @item
## displays the FIS rules in symbolic format in the Octave window
## @end itemize
##
## @seealso{cubic_approx_demo, heart_disease_demo_1, heart_disease_demo_2, investment_portfolio_demo, linear_tip_demo, sugeno_tip_demo}
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy tests demos
## Note: This example is based on an assignment written by
## Dr. Bruce Segee (University of Maine Dept. of ECE).
## Directory: fuzzy-logic-toolkit/inst
## Filename: mamdani_tip_demo.m
## Last-Modified: 4 Jun 2024
## Read the FIS structure from a file.
fis = readfis ('mamdani_tip_calculator.fis');
## Plot the input and output membership functions.
plotmf (fis, 'input', 1);
plotmf (fis, 'input', 2);
plotmf (fis, 'output', 1);
plotmf (fis, 'output', 2);
## Plot the Tip and Check + Tip as functions of Food-Quality
## and Service.
gensurf (fis, [1 2], 1);
gensurf (fis, [1 2], 2);
## Calculate the Tip and Check + Tip using
## (Food-Quality, Service) = (4, 6).
[output, rule_input, rule_output, fuzzy_output] = ...
evalfis ([4 6], fis, 1001);
## Plot the first output (Tip) of the individual fuzzy rules
## on one set of axes.
x_axis = linspace (fis.output(1).range(1), ...
fis.output(1).range(2), 1001);
colors = ['r' 'b' 'm' 'g'];
figure ('NumberTitle', 'off', 'Name', ...
'Output of Fuzzy Rules 1-4 for Input = (4, 6)');
for i = 1 : 4
y_label = [colors(i) ";Rule " num2str(i) ";"];
plot (x_axis, rule_output(:,i), y_label, 'LineWidth', 2);
hold on;
endfor
ylim ([-0.1, 1.1]);
xlabel ('Tip', 'FontWeight', 'bold');
grid;
hold;
## Plot the first aggregated fuzzy output and the first crisp output
## (Tip) on one set of axes.
figure('NumberTitle', 'off', 'Name', ...
'Aggregation and Defuzzification for Input = (4, 6)');
plot (x_axis, fuzzy_output(:, 1), "b;Aggregated Fuzzy Output;", ...
'LineWidth', 2);
hold on;
crisp_output = evalmf(x_axis, output(1), 'constant');
y_label = ["r;Crisp Output = " num2str(output(1)) "%;"];
plot (x_axis, crisp_output, y_label, 'LineWidth', 2);
ylim ([-0.1, 1.1]);
xlabel ('Tip', 'FontWeight', 'bold');
grid;
hold;
## Show the rules in symbolic format.
puts ("\nMamdani Tip Calculator Rules:\n\n");
showrule (fis, 1:columns(fis.rule), 'symbolic');
%!test
%! fis = readfis ('mamdani_tip_calculator.fis');
%! food_service = [1 1; 5 5; 10 10; 4 6; 6 4; 7 4];
%! tip = evalfis (food_service, fis, 1001);
%! expected_result = ...
%! [10.0000 1.1000
%! 15.0000 1.1500
%! 20.0000 1.2000
%! 15.0000 1.1500
%! 15.0000 1.1500
%! 16.4708 1.1647];
%! assert(tip, expected_result, 1e-4);
|