File: partition_entropy.m

package info (click to toggle)
octave-fuzzy-logic-toolkit 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: makefile: 147
file content (99 lines) | stat: -rw-r--r-- 3,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{vpe} =} partition_entropy (@var{soft_partition}, @var{a})
##
## Return the partition entropy for a given soft partition.
##
## The arguments to partition_entropy are:
## @itemize @w
## @item
## @var{soft_partition}: the membership degree of each input data point in each cluster
## @item
## @var{a}: the log base to use in the calculation; must be a real number a > 1
## @end itemize
##
## The return value is:
## @itemize @w
## @item
## @var{vpe}: the partition entropy for the given soft partition
## @end itemize
##
## To run demonstration code that uses this function, type "@t{demo fcm}"
## or "@t{demo gustafson_kessel}" (without the quotation marks) at the
## Octave prompt.
##
## For more information about the @var{soft_partition} matrix, please see the
## For more information about the @var{soft_partition} matrix, please see the
## documentation for function fcm.
##
## @seealso{fcm, gustafson_kessel, partition_coeff, xie_beni_index}
##
## @end deftypefn

## Author:        L. Markowsky
## Keywords:      fuzzy-logic-toolkit partition entropy cluster
## Directory:     fuzzy-logic-toolkit/inst/
## Filename:      partition_entropy.m
## Last-Modified: 13 Jun 2024

##----------------------------------------------------------------------
## Note: This function is an implementation of Equation 13.10 in
##       Fuzzy Logic: Intelligence, Control and Information, by J. Yen
##       and R. Langari, Prentice Hall, 1999, page 384 (International
##       Edition). 
##----------------------------------------------------------------------

function vpe = partition_entropy (soft_partition, a)

  ## If partition_entropy was called with an incorrect number of
  ## arguments, or the argument does not have the correct type, print an
  ## error message and halt.

  if (nargin != 2)
    error ("partition_entropy requires 2 arguments\n");
  elseif (!(is_real_matrix (soft_partition) &&
            (min (min (soft_partition)) >= 0) &&
            (max (max (soft_partition)) <= 1)))
    error ("partition_entropy's 1st arg must be a matrix of reals 0.0-1.0\n");
  elseif (!(is_real (a) && a > 1))
    error ("partition_entropy's 2nd arg must be a real greater than 1\n");
  endif

  ## Compute and return the partition entropy.

  n = columns (soft_partition);
  Mu = soft_partition;
  log_a_Mu = log (Mu) / log (a);
  vpe = -(sum (sum (Mu .* log_a_Mu))) / n;

endfunction

## Test input validation
%!error <partition_entropy requires 2 arguments>
%! partition_entropy()
%!error <partition_entropy requires 2 arguments>
%! partition_entropy(1)
%!error <partition_entropy: function called with too many inputs>
%! partition_entropy(1, 2, 3)
%!error <partition_entropy's 1st arg must be a matrix of reals 0.0-1.0>
%! partition_entropy([1 2], 2)
%!error <partition_entropy's 2nd arg must be a real greater than 1>
%! partition_entropy([1 1], -2)