File: plotmf.m

package info (click to toggle)
octave-fuzzy-logic-toolkit 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: makefile: 147
file content (203 lines) | stat: -rw-r--r-- 7,252 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} plotmf (@var{fis}, @var{in_or_out}, @var{var_index})
## @deftypefnx {Function File} {} plotmf (@var{fis}, @var{in_or_out}, @var{var_index}, @var{y_lower_limit})
## @deftypefnx {Function File} {} plotmf (@var{fis}, @var{in_or_out}, @var{var_index}, @var{y_lower_limit}, @var{y_upper_limit})
##
## Plot the membership functions defined for the specified FIS input or output
## variable on a single set of axes. Fuzzy output membership functions are
## represented by the [0, 1]-valued fuzzy functions, and constant output
## membership functions are represented by unit-valued singleton spikes.
## Linear output membership functions, however, are represented by
## two-dimensional lines y = ax + c, regardless of how many dimensions the
## linear function is defined to have. In effect, all of the other dimensions
## of the linear function are set to 0.
##
## If both constant and linear membership functions are used for a single FIS
## output, then two sets of axes are used: one for the constant membership
## functions, and another for the linear membership functions. To plot both
## constant and linear membership functions together, or to plot constant
## membership functions as horizontal lines instead of unit-valued spikes,
## represent the constant membership functions using 'linear' functions, with
## 0 for all except the last parameter, and with the desired constant value as
## the last parameter.
##
## The types/values of the arguments are expected to be:
##
## @multitable @columnfractions .30 .65
## @headitem Argument @tab Expected Type or Value
## @item @var{fis}
## @tab  an FIS structure
## @item @var{in_or_out}
## @tab  either 'input' or 'output' (case-insensitive)
## @item @var{var_index}
## @tab  an FIS input or output variable index
## @item @var{y_lower_limit}
## @tab  a real scalar (default value = -0.1)
## @item @var{y_upper_limit}
## @tab  a real scalar (default value = 1.1)
## @end multitable
## @sp 1
## Six examples that use plotmf are:
## @itemize @bullet
## @item
## cubic_approx_demo.m
## @item
## heart_disease_demo_1.m
## @item
## heart_disease_demo_2.m
## @item
## investment_portfolio_demo.m
## @item
## linear_tip_demo.m
## @item
## mamdani_tip_demo.m
## @item
## sugeno_tip_demo.m
## @end itemize
##
## @seealso{gensurf}
## @end deftypefn

## Author:        L. Markowsky
## Keywords:      fuzzy-logic-toolkit fuzzy membership plot
## Directory:     fuzzy-logic-toolkit/inst/
## Filename:      plotmf.m
## Last-Modified: 12 Jun 2024

function plotmf (fis, in_or_out, var_index, ...
                 y_lower_limit = -0.1, y_upper_limit = 1.1)

  ## If the caller did not supply 3 argument values with the correct
  ## types, print an error message and halt.

  if ((nargin < 3) || (nargin > 5))
    error ("plotmf requires 3 - 5 arguments\n");
  elseif (!is_fis (fis))
    error ("plotmf's first argument must be an FIS structure\n");
  elseif (!(is_string (in_or_out) && ...
           ismember (tolower (in_or_out), {'input', 'output'})))
    error ("plotmf's second argument must be 'input' or 'output'\n");
  elseif (!is_var_index (fis, in_or_out, var_index))
    error ("plotmf's third argument must be a variable index\n");
  elseif (!(is_real (y_lower_limit) && is_real (y_upper_limit)))
    error ("plotmf's 4th and 5th arguments must be real scalars\n");
  endif

  ## Select specified variable and construct the window title.

  if (strcmpi (in_or_out, 'input'))
    var = fis.input(var_index);
    window_title = [' Input ' num2str(var_index) ' Term Set'];
  else
    var = fis.output(var_index);
    window_title = [' Output ' num2str(var_index) ' Term Set'];
  endif

  ## Plot the membership functions for the specified variable.
  ## Cycle through the five colors: red, blue, green, magenta, cyan.
  ## Display the membership function names in a legend.

  colors = ["r" "b" "g" "m" "c"];
  x = linspace (var.range(1), var.range(2), 1001); 
  num_mfs = columns (var.mf);

  ## Define vectors to keep track of linear and non-linear mfs.

  linear_mfs = zeros (1, num_mfs);
  for i = 1 : num_mfs
    if (strcmp ('linear', var.mf(i).type))
      linear_mfs(i) = 1;
    endif
  endfor
  fuzzy_and_constant_mfs = 1 - linear_mfs;

  ## Plot the fuzzy or constant membership functions together on a set
  ## of axes.

  if (sum (fuzzy_and_constant_mfs))
    figure ('NumberTitle', 'off', 'Name', window_title);

    ## Plot the mfs.
    for i = 1 : num_mfs
      if (fuzzy_and_constant_mfs(i))
        y = evalmf_private (x, var.mf(i).params, var.mf(i).type);
        y_label = [colors(mod(i-1,5)+1) ";" var.mf(i).name ";"];
        plot (x, y, y_label, 'LineWidth', 2);
        hold on;
      endif
    endfor

    ## Adjust the y-axis, label both axes, and display a dotted grid.
    ylim ([y_lower_limit y_upper_limit]);
    xlabel (var.name, 'FontWeight', 'bold');
    ylabel ('Degree of Membership', 'FontWeight', 'bold');
    grid;
    hold;
  endif

  ## Plot the linear membership functions together on a separate set
  ## of axes.

  if (sum (linear_mfs))
    figure ('NumberTitle', 'off', 'Name', window_title);

    ## Plot the mfs.
    for i = 1 : num_mfs
      if (linear_mfs(i))
        y = evalmf_private (x, var.mf(i).params, var.mf(i).type);
        y_label = [colors(mod(i-1,5)+1) ";" var.mf(i).name ";"];
        plot (x, y, y_label, 'LineWidth', 2);
        hold on;
      endif
    endfor

    ## Adjust the y-axis, label both axes, and display a dotted grid.
    ylim ([y_lower_limit y_upper_limit]);
    xlabel ('X', 'FontWeight', 'bold');
    ylabel (var.name, 'FontWeight', 'bold');
    grid;
    hold;
  endif

endfunction

%!shared fis
%! fis = readfis ('cubic_approximator.fis');

## Test input validation
%!error <plotmf requires 3 - 5 arguments>
%! plotmf()
%!error <plotmf requires 3 - 5 arguments>
%! plotmf(1)
%!error <plotmf requires 3 - 5 arguments>
%! plotmf(1, 2)
%!error <plotmf: function called with too many inputs>
%! plotmf(1, 2, 3, 4, 5, 6)
%!error <plotmf's first argument must be an FIS structure>
%! plotmf(1, 2, 3)
%!error <plotmf's second argument must be 'input' or 'output'>
%! plotmf(fis, 2, 3)
%!error <plotmf's third argument must be a variable index>
%! plotmf(fis, 'input', 3)
%!error <plotmf's 4th and 5th arguments must be real scalars>
%! plotmf(fis, 'input', 1, 2j)
%!error <plotmf's 4th and 5th arguments must be real scalars>
%! plotmf(fis, 'input', 1, 0, 2j)