1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{fuzzy_output} =} aggregate_output_mamdani (@var{fis}, @var{rule_output})
##
## Given the:
## @itemize @bullet
## @item @var{fis.aggMethod:}
## the aggregation method for the given @var{fis}
## @item @var{rule_output:}
## a matrix of the fuzzy output for each (rule, FIS output) pair
## @end itemize
##
## Return:
## @itemize @bullet
## @item @var{fuzzy_output:}
## a matrix of the aggregated output for each FIS output variable
## @end itemize
##
## @var{rule_output} is a @var{num_points} x (Q * M) matrix, where
## @var{num_points} is the number of points over which the fuzzy
## values are evaluated, Q is the number of rules and M is the number
## of FIS output variables. Each column of @var{rule_output} gives
## the y-values of the fuzzy output for a single (rule, FIS output)
## pair:
##
## @verbatim
## Q cols Q cols Q cols
## --------------- --------------- ---------------
## out_1 ... out_1 out_2 ... out_2 ... out_M ... out_M
## 1 [[ ]
## 2 [ ]
## ... [ ]
## num_points [ ]]
## @end verbatim
##
## The return value @var{fuzzy_output} is a @var{num_points} x M matrix. Each
## column of @var{fuzzy_output} gives the y-values of the fuzzy output for a
## single FIS output variable, aggregated over all rules:
##
## @verbatim
## out_1 out_2 ... out_M
## 1 [[ ]
## 2 [ ]
## ... [ ]
## num_points [ ]]
## @end verbatim
##
## Because aggregate_output_mamdani is called only by the private
## function evalfis_private, it does no error checking of the argument values.
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy inference system fis
## Directory: fuzzy-logic-toolkit/inst/private/
## Filename: aggregate_output_mamdani.m
## Last-Modified: 26 Jul 2024
function fuzzy_output = aggregate_output_mamdani (fis, rule_output)
num_rules = columns (fis.rule); ## num_rules == Q (above)
num_outputs = columns (fis.output); ## num_outputs == L
num_points = rows (rule_output);
## Initialize output matrix to prevent inefficient resizing.
fuzzy_output = zeros (num_points, num_outputs);
## Compute the ith fuzzy output values, then store the values in the
## ith column of the fuzzy_output matrix.
for i = 1 : num_outputs
indiv_fuzzy_out = ...
rule_output(:, (i - 1) * num_rules + 1 : i * num_rules);
agg_fuzzy_out = (str2func (fis.aggMethod) (indiv_fuzzy_out'))';
fuzzy_output(:, i) = agg_fuzzy_out;
endfor
endfunction
|