1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{rule_output} =} eval_rules_sugeno (@var{fis}, @var{firing_strength}, @var{user_input})
##
## Return the fuzzy output for each (rule, FIS output) pair for a
## Sugeno-type FIS (an FIS that has only constant and linear output
## membership functions).
##
## The firing strength of each rule is given by a row vector of length Q, where
## Q is the number of rules in the FIS:
## @example
## @group
## rule_1 rule_2 ... rule_Q
## [firing_strength(1) firing_strength(2) ... firing_strength(Q)]
## @end group
## @end example
##
## The consequent for each rule is given by:
## @example
## fis.rule(i).consequent for i = 1..Q
## @end example
##
## The return value of the function is a 2 x (Q * M) matrix, where
## M is the number of FIS output variables.
## Each column of this matrix gives the (location, height) pair of the
## singleton output for a single (rule, FIS output) pair.
##
## @example
## @group
## Q cols Q cols Q cols
## --------------- --------------- ---------------
## out_1 ... out_1 out_2 ... out_2 ... out_M ... out_M
## location [[ ]
## height [ ]]
## @end group
## @end example
##
## Note that for Sugeno FISs, the hedge and not flag are handled by
## adjusting the height of the singletons for each (rule, output) pair.
##
## Because eval_rules_sugeno is called only by the private function
## evalfis_private, it does no error checking of the argument values.
##
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy inference system fis
## Directory: fuzzy-logic-toolkit/inst/private/
## Filename: eval_rules_sugeno.m
## Last-Modified: 10 Jun 2024
function rule_output = eval_rules_sugeno (fis, firing_strength, ...
user_input)
num_rules = columns (fis.rule); ## num_rules == Q (above)
num_outputs = columns (fis.output); ## num_outputs == L
## Initialize output matrix to prevent inefficient resizing.
rule_output = zeros (2, num_rules * num_outputs);
## Compute the (location, height) of the singleton output by each
## (rule, output) pair:
## 1. The height is given by the firing strength of the rule, and
## by the hedge and the not flag for the (rule, output) pair.
## 2. If the consequent membership function is constant, then the
## membership function's parameter gives the location of the
## singleton. If the consequent membership function is linear,
## then the location is the inner product of the the membership
## function's parameters and the vector formed by appending a 1
## to the user input vector.
for i = 1 : num_rules
rule = fis.rule(i);
rule_firing_strength = firing_strength(i);
if (rule_firing_strength != 0)
for j = 1 : num_outputs
## Compute the singleton height for this (rule, output) pair.
## Note that for Sugeno FISs, the hedge and not flag are handled
## by adjusting the height of the singletons for each
## (rule, output) pair.
[mf_index hedge not_flag] = ...
get_mf_index_and_hedge (rule.consequent(j));
height = rule_firing_strength;
if (hedge != 0)
height = height ^ (1 / hedge);
endif
if (not_flag)
height = 1 - height;
endif
## Compute the singleton location for this (rule, output) pair.
if (mf_index != 0)
mf = fis.output(j).mf(mf_index);
switch (mf.type)
case 'constant'
location = mf.params;
case 'linear'
location = mf.params * [user_input 1]';
otherwise
location = str2func (mf.type) (mf.params, user_input);
endswitch
## Store result in column of rule_output corresponding
## to the (rule, output) pair.
rule_output(1, (j - 1) * num_rules + i) = location;
rule_output(2, (j - 1) * num_rules + i) = height;
endif
endfor
endif
endfor
endfunction
|