1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
## Copyright (C) 2011-2025 L. Markowsky <lmarkowsky@gmail.com>
##
## This file is part of the fuzzy-logic-toolkit.
##
## The fuzzy-logic-toolkit is free software; you can redistribute it
## and/or modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3 of
## the License, or (at your option) any later version.
##
## The fuzzy-logic-toolkit is distributed in the hope that it will be
## useful, but WITHOUT ANY WARRANTY; without even the implied warranty
## of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with the fuzzy-logic-toolkit; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{firing_strength} =} eval_firing_strength (@var{fis}, @var{rule_input})
##
## Return the firing strength for each FIS rule given a matrix of matching
## degrees for each (rule, rule_input) pair.
##
## The second argument (@var{rule_input}) gives the fuzzified input values to
## the FIS rules as a Q x N matrix:
##
## @verbatim
## in_1 in_2 ... in_N
## rule_1 [[mu_11 mu_12 ... mu_1N]
## rule_2 [mu_21 mu_22 ... mu_2N]
## [ ... ]
## rule_Q [mu_Q1 mu_Q2 ... mu_QN]]
## @end verbatim
##
## where Q is the number of rules and N is the number of FIS input variables.
##
## For i = 1 .. Q, the fuzzy antecedent, connection, and weight for rule i
## are given by:
## @itemize @bullet
## @item
## @var{fis.rule(i).antecedent}
## @item
## @var{fis.rule(i).connection}
## @item
## @var{fis.rule(i).weight}
## @end itemize
##
## The output is a row vector of length Q.
##
## Because eval_firing_strength is called only by the private function
## evalfis_private, it does no error checking of the argument values.
##
## @end deftypefn
## Author: L. Markowsky
## Keywords: fuzzy-logic-toolkit fuzzy inference system fis
## Directory: fuzzy-logic-toolkit/inst/private/
## Filename: eval_firing_strength.m
## Last-Modified: 13 Jun 2024
function firing_strength = eval_firing_strength (fis, rule_input)
num_rules = columns (fis.rule); ## num_rules == Q (above)
num_inputs = columns (fis.input); ## num_inputs == N
## Initialize output matrix to prevent inefficient resizing.
firing_strength = zeros (1, num_rules);
## For each rule
## 1. Apply connection to find matching degree of the antecedent.
## 2. Multiply by weight of the rule to find degree of the rule.
for i = 1 : num_rules
rule = fis.rule(i);
## Collect mu values for all input variables in the antecedent.
antecedent_mus = [];
for j = 1 : num_inputs
if (rule.antecedent(j) != 0)
mu = rule_input(i, j);
antecedent_mus = [antecedent_mus mu];
endif
endfor
## Compute matching degree of the rule.
if (rule.connection == 1)
connect = fis.andMethod;
else
connect = fis.orMethod;
endif
switch (connect)
case 'min'
firing_strength(i) = rule.weight * ...
min (antecedent_mus);
case 'max'
firing_strength(i) = rule.weight * ...
max (antecedent_mus);
case 'prod'
firing_strength(i) = rule.weight * ...
prod (antecedent_mus);
case 'sum'
firing_strength(i) = rule.weight * ...
sum (antecedent_mus);
case 'algebraic_product'
firing_strength(i) = rule.weight * ...
prod (antecedent_mus);
case 'algebraic_sum'
firing_strength(i) = rule.weight * ...
algebraic_sum (antecedent_mus);
case 'bounded_difference'
firing_strength(i) = rule.weight * ...
bounded_difference (antecedent_mus);
case 'bounded_sum'
firing_strength(i) = rule.weight * ...
bounded_sum (antecedent_mus);
case 'einstein_product'
firing_strength(i) = rule.weight * ...
einstein_product (antecedent_mus);
case 'einstein_sum'
firing_strength(i) = rule.weight * ...
einstein_sum (antecedent_mus);
case 'hamacher_product'
firing_strength(i) = rule.weight * ...
hamacher_product (antecedent_mus);
case 'hamacher_sum'
firing_strength(i) = rule.weight * ...
hamacher_sum (antecedent_mus);
case 'drastic_product'
firing_strength(i) = rule.weight * ...
drastic_product (antecedent_mus);
case 'drastic_sum'
firing_strength(i) = rule.weight * ...
drastic_sum (antecedent_mus);
otherwise
firing_strength(i) = rule.weight * ...
str2func (connect) (antecedent_mus);
endswitch
endfor
endfunction
|