1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
## Copyright (C) 2014 Andreas Emch and Eduardo Hahn Paredes
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
% -*- texinfo -*-
% @deftypefn {Function File} {[@var{in}, @var{on}] =} inpolyeder (@var{x}, @var{y}, @var{z}, @var{xv}, @var{yv}, @var{zv}, @var{doPlot}, @var{doPlotHelpers})
% For a polyeder defined by vertex points @code{(@var{xv}, @var{yv}, @var{zv})},
% determine if the points @code{(@var{x}, @var{y}), @var{z})} are inside or
% outside the polyeder.
% The variables @var{x}, @var{y}, @var{z} must have the same dimension. The optional
% output @var{on} gives the points that are on the polyeder.
% @seealso{inpolygon}
% @end deftypefn
% Author: Andreas Emch, Eduardo Hahn Paredes
% Created: December 2012
function [in, on] = inpolyeder (x, y, z, xv, yv, zv, doPlot, doPlotHelpers)
if (nargin < 6)
print_usage ();
endif
if (!(isreal(x) && isreal(y) && isreal(z)
&& ismatrix(y) && ismatrix(y) && ismatrix(z)
&& size_equal(x, y, z)))
error("inpolyeder: The first 3 vectors need to have the same size (test points)");
elseif (! (isreal(xv) && isreal(yv) && isreal(zv)
&& isvector(xv) && isvector(yv) && isvector(zv)
&& size_equal(xv, yv, zv)))
error("inpolyeder: The last 3 vectors need to have the same size (polyeder corners)");
endif
if (!isbool(doPlot))
error("inpolyeder: doPlot has to be a boolean value");
endif
if (!isbool(doPlotHelpers))
error("inpolyeder: doPlotHelpers has to be a boolean value");
endif
starttTime = cputime;
X = [xv, yv, zv];
K = convhulln(X);
P = [x y z];
on = zeros(size(x), "logical")';
in = zeros(size(x), "logical")';
if (doPlot == true)
clf
hold on
t = trisurf(K, X(:,1), X(:,2), X(:,3));
set(t,'facealpha',0.5)
m=unique(K);
plot3(X(m,1), X(m,2), X(m,3), 'ko', 'markerfacecolor', 'b');
endif
counter = 0;
for p1 = P'
counter++;
left = 0;
right = 0;
do
p2 = p1 + rand(3,1);
until (p1 != p2)
if (doPlotHelpers)
point1 = p1 + (-20 .* (p2-p1));
point2 = p1 + (20 .* (p2-p1));
plot3([point1(1,1); point2(1,1)], [point1(2,1); point2(2,1)], [point1(3,1); point2(3,1)], 'k-');
endif
for poly = K'
a = X(poly(1,1),:)';
b = X(poly(2,1),:)';
c = X(poly(3,1),:)';
[pointIn pointDistance point] = isIntersectionInPolygon3D(p1, p2, a, b, c);
if (pointIn)
if (pointDistance > 0)
left += 1;
elseif (pointDistance < 0)
right += 1;
elseif (pointDistance == 0)
on(1,counter) = true;
endif
endif
if (doPlotHelpers && !isnan(point))
if (pointIn)
plot3(point(1,1), point(2,1), point(3,1), 'ko', 'markerfacecolor', 'y');
else
plot3(point(1,1), point(2,1), point(3,1), 'k*', 'markerfacecolor', 'y');
endif
endif
endfor
if (mod(left,2) == 1 && mod(right,2) == 1)
in(1,counter) = true;
endif
endfor
if (doPlot == true)
plot3(x(in'), y(in'), z(in'),'ko', 'markerfacecolor', 'g',
x(~in'), y(~in'), z(~in'),'ko', 'markerfacecolor', 'r',
x(on'), y(on'), z(on'),'ko', 'markerfacecolor', 'k')
x_max = max(max(X(:,1)), max(P(:,1))) + 0.5;
x_min = min(min(X(:,1)), min(P(:,1))) - 0.5;
y_max = max(max(X(:,2)), max(P(:,2))) + 0.5;
y_min = min(min(X(:,2)), min(P(:,2))) - 0.5;
z_max = max(max(X(:,3)), max(P(:,3))) + 0.5;
z_min = min(min(X(:,3)), min(P(:,3))) - 0.5;
axis ([x_min x_max y_min y_max z_min z_max]);
hold off
endif
printf('Total cpu time for checking %d points in a polyeder of %d polygons: %f seconds\n', size(x)(1,1), size(K)(1,1), cputime-starttTime);
endfunction
|