1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
## Copyright (C) 2017-2019 Philip Nienhuis
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} [@var{VXo}, @var{VYo}] = polybool (@var{op}, @var{VX1}, @var{VY1}, @var{VX2}, @var{VY2})
## @deftypefnx {Function File} [@var{MXYZ}] = polybool (@var{op}, @var{MSP}, @var{MCP})
## @deftypefnx {Function File} [@var{MXYZ}] = polybool (@dots{}, @var{library})
## Perform boolean operation(s) on polygons.
##
## The subject and clip polygons can each be represented by two separate
## input vectors. The subject polygon X and Y coordinates would be @var{VX1}
## and @var{VY1}, resp., and the clip polygon(s) X and Y coordinates would be
## @var{VX2} and @var{VY2}. All these vectors can be row or column vectors,
## numeric or cell, and the output format will match that of @var{VX1} and
## @var{VY1}.
##
## Alternatively, the subject and clip polygons can be represented by 2D or
## 3D matrices (@var{MSP} and @var{MCP}, respectively) of X, Y, and
## -optionally- Z values, where each row constitues the coordinates of one
## vertex. The Z values of clip polygon(s) are ignored. Z-values of newly
## created vertices in the output polygon(s) are copied from the nearest
## vertex in the subject polygon(s).
##
## In any case the input polygons can be multipart, where subpolygons are
## separated by NaN values (or NaN rows in case of matrix input). By
## convention, in case of nested polygons the outer polygon should have a
## clockwise winding direction, inner polygons constituting "holes" should
## have a counterclockwise winding direction; polygons nested in holes
## should again be clockwise, and so on.
##
## Every polygon part should comprise at least different 3 vertices. As
## polygons are implicitly assumed to be closed, no need to repeat the first
## vertex as last closing vertex.
##
## Likewise, output polygons returned in @var{VXo} and @var{VYo} (in case
## of vector input) or @var{MXYZ} (in case of matrix input) can be multipart
## and if so also have NaNs or NaN row(s) separating subpolygons.
##
## @var{op} is the requested operation and can be one of the following (for
## character values only the first letter is required, case-independent):
##
## @table @asis
## @item 0 (numeric)
## @itemx "subtraction"
## @itemx "minus" @*
## Subtract the clip polygon(s) from the subject polygon(s).
##
## @item 1 (numeric)
## @itemx "intersection"
## @itemx "and" @*
## Return intersection(s) of subject and clip polygon(s).
##
## @item 2 (numeric)
## @itemx "exclusiveor"
## @itemx "xor" @*
## Return ExclusiveOr(s) of subject and clip polygon(s); this is the
## complement of the 'and' operation or the result of subtracting the output
## of 'and' from 'or' operations on both polygons.
##
## @item 3 (numeric)
## @itemx "union"
## @itemx "or" @*
## Return the union of both input polygons.
## @end table
##
## @seealso{ispolycw,isShapeMultiPart}
## @end deftypefn
## Author: Philip Nienhuis <prnienhuis@users.sf.net>
## Created: 2017-11-12
function [xo, yo] = polybool (op, varargin)
## Input checks
if (nargin < 3)
## For matrices we need at least 3 args. For vectors we'll check later.
print_usage ();
elseif (! ischar (op) && (isnumeric (op) && (op < 0 || op > 3)))
error ("Octave:invalid-input-arg", ...
"polybool: char value or numeric value [0-3] expected for arg. #1");
endif
## Check subject polygon class and type.
## itype = 1 (column vectors), 2 (row vectors), -1 (matrix),
## 3 (cell column vectors), 4 (cell row vectors)
if (isnumeric (varargin{1}) && isnumeric (varargin{2}))
sza1 = size (varargin{1});
if (isvector (varargin{1}))
## Separate numeric vector input (ML compatible). Make it a Nx2 matrix
itype = 1;
X1 = varargin{1};
Y1 = varargin{2};
elseif (numel (sza1) == 2 && prod (sza1) > max (sza1) && ...
sza1(1) >= 3 && sza1(1) >= sza1(2))
## Matrix input (makes Z-values possible), X,Y{,Z] in columns
itype = -1;
inpol = varargin{1};
else
error ("Octave:invalid-input-arg", ...
"polybool: Nx2 or Nx3 (with N > 2) numeric input expected for arg #2");
endif
elseif (iscell (varargin{1}) && iscell (varargin{2}))
## Always assume (ML-compatible) vector input
itype = 3;
[X1, Y1] = polyjoin (varargin{1}, varargin{2});
else
error ("Octave:invalid-input-arg", ...
"polybool: X1, Y1 input vectors must be same class");
endif
if (itype != -1)
## X1 and X2 are assumed numeric vectors now
if (numel (X1) != numel (Y1))
error ("Octave:invalid-input-arg", ...
"polybool: X1, Y1 input vectors must be same length");
endif
if (isrow (X1) != isrow (Y1))
error ("Octave:invalid-input-arg", ...
"polybool: X1 and Y1 should have same dimension");
endif ## Convert vector input into a Nx2 matrix
if (isrow (X1))
++itype;
inpol = [X1; Y1]';
else
inpol = [X1 Y1];
endif
endif
if (size (inpol, 1) < 3)
## Not a polygon
error ("Octave:invalid-input-arg", ...,
"polybool: input 'polygon' has less than 3 vertices");
endif
## Check clip polygon class and type.
## ctype = 1 (column vectors), 2 (row vectors), -1 (matrix),
## 3 (cell column vectors), 4 (cell row vectors)
if (itype == -1)
## Matrix input
sza2 = size (varargin{2});
if (numel (sza2) == 2 && prod (sza2) > max (sza2) && ...
sza2(1) >= 3 && sza2(1) >= sza2(2))
ctype = -1;
clpol = varargin{2};
else
error ("Octave:invalid-input-arg", ...,
"polybool: Nx3 matrix input (with N > 2) expected for arg #3");
endif
elseif (nargin < 5)
# For vector input we need at least 5 args
print_usage ();
else
if (isnumeric (varargin{3}) && isnumeric (varargin{4}))
ctype = 1;
X2 = varargin{3};
Y2 = varargin{4};
elseif (iscell (varargin{3}) && iscell (varargin{4}))
ctype = 3;
[X2, Y2] = polyjoin (varargin{3}, varargin{4});
else
error ("Octave:invalid-input-arg", ...
"polybool: X2, Y2 input vectors must be same class");
endif
if (isrow (X2) != isrow (Y2))
error ("Octave:invalid-input-arg", ...
"polybool: X2 and Y2 should have same dimension");
endif
if (numel (X2) != numel (Y2))
error ("Octave:invalid-input-arg", ...
"polybool: X2, Y2 input vectors must be same length");
endif
## Turn clip poygon into matrix
if (isrow (X2))
++ctype;
clpol = [X2; Y2]';
else
clpol = [X2 Y2];
endif
endif
if (size (inpol, 1) < 3)
## Not a polygon
error ("Octave:invalid-input-arg", ...,
"polybool: clip 'polygon' has less than 3 vertices");
endif
## Boolean operation library
ichar = 0;
blib = "clipper";
## Find out arg no. of library name
if (itype == -1 && nargin > 3)
ichar = 3;
elseif (nargin > 5)
ichar = 5;
endif
if (ichar)
if (ischar (varargin{ichar}))
blib = lower (varargin{ichar});
if (! ismember (blib, {"clipper", "mrf"}))
error ("Octave:invalid-input-arg", ...,
"polybool: unknown polygon library - %s", blib);
endif
elseif (! ischar (varargin{ichar}))
print_usage ();
endif
endif
if (ischar (op))
switch (lower (op(1)))
case {"s", "m", "-"}
## Subtraction
op = 0;
case {"i", "a", "&"}
## Intersection / And
op = 1;
case {"e", "x"}
## ExclusiveOR
op = 2;
case {"u", "o", "|", "+", "p"}
## Union / Or
op = 3;
otherwise
error ("Octave:invalid-input-arg", ...
"polybool: unknown operation '%s'", op);
endswitch
endif
## Call clipPolygon (geometry pkg) to do the work
try
if (strcmp (blib, "clipper"))
[outpol, npol] = clipPolygon_clipper (inpol, clpol, op);
else
[outpol, npol] = clipPolygon_mrf (inpol, clpol, op);
endif
catch
error ("polybool: internal error, possibly invalid geometric input");
end_try_catch
## Postprocess output to match input formats
switch itype
case 1
## Numeric column input
xo = outpol(:, 1);
yo = outpol(:, 2);
case 2
## Numeric row input
xo = outpol(:, 1)';
yo = outpol(:, 2)';
case 3
## cell column input
xo = {outpol(:, 1)};
yo = {outpol(:, 2)};
case 4
## Cell row input
xo = {outpol(:, 1)'};
yo = {outpol(:, 2)'};
case -1
## Matrix input
xo = outpol;
yo = [];
otherwise
endswitch
endfunction
%!shared ipol, cpol, ix, iy, cx, cy, xi, yi, xc, yc
%! ipol = [0 0; 3 0; 3 3; 0 3; 0 0];
%! cpol = [2, 1; 5, 1; 5, 4; 2, 4; 2, 1];
%! ix = {ipol(:, 1)'};
%! iy = {ipol(:, 2)'};
%! cx = {cpol(:, 1)'};
%! cy = {cpol(:, 2)'};
%! xi = {ipol(:, 1)};
%! yi = {ipol(:, 2)};
%! xc = {cpol(:, 1)};
%! yc = {cpol(:, 2)};
%% Subtraction - matrix input
%!test
%! opol = polybool (0, ipol, cpol);
%! assert (size (opol), [7, 2]);
%! assert (polygonArea (opol), 7);
%% Subtraction - row vector input input
%!test
%! [ox, oy] = polybool (0, ix, iy, cx, cy);
%! opol = [ox{1}', oy{1}'];
%! assert (size (opol), [7, 2]);
%! assert (polygonArea (opol), 7);
%% Subtraction - column vector input input
%!test
%! [ox, oy] = polybool (0, xi, yi, xc, yc);
%! opol = [ox{1}, oy{1}];
%! assert (size (opol), [7, 2]);
%! assert (polygonArea (opol), 7);
%!test
%! opol = polybool (1, cpol, ipol);
%! assert (size (opol), [5, 2]);
%! assert (polygonArea (opol), 2);
%!test
%! [ox, oy] = polybool (1, ix, iy, cx, cy);
%! opol = [ox{1}', oy{1}'];
%! assert (size (opol), [5, 2]);
%! assert (polygonArea (opol), 2);
%!test
%! opol = polybool (2, cpol, ipol);
%! assert (size (opol), [15, 2]);
%! assert (polygonArea (opol), 14);
%!test
%! [ox, oy] = polybool (2, ix, iy, cx, cy);
%! opol = [ox{1}', oy{1}'];
%! assert (size (opol), [15, 2]);
%! assert (polygonArea (opol), 14);
%!test
%! opol = polybool (3, cpol, ipol);
%! assert (size (opol), [9, 2]);
%! assert (polygonArea (opol), 16);
%!test
%! [ox, oy] = polybool (3, ix, iy, cx, cy);
%! opol = [ox{1}', oy{1}'];
%! assert (size (opol), [9, 2]);
%! assert (polygonArea (opol), 16);
%!error<input 'polygon' has less than 3 vertices> polybool ("a", 1, 2, 3 ,4);
%!error<char value or numeric value> polybool (-1, 1, 2);
%!error<char value or numeric value> polybool (-1, [1 1; 2 2; 3 3], [2 2; 3 3; 4 4]);
%!error<Nx3 matrix> polybool (1, [0 0 0; 2 2 2; 5 5 5], [1 1 1; 3 3 3]);
%!error<internal error> polybool (1, [0 0 0; 2 2 2; 5 5 5], [1 1 1; 3 3 3; 6 6 7]);
%!error<X1, Y1 input vectors must be same class> polybool (1, {1, 2}, [1, 2]);
%!error<X1, Y1 input vectors must be same length> polybool (1, {[1, 2, 3]}, {[1, 2, 3, 4]});
%!error<X2, Y2 input vectors must be same length> polybool (1, {[1, 2, 3]}, {[1, 2, 3]}, {[1, 2, 3]}, {[1, 2, 4, 5]});
%!error<unknown operation 'z'> polybool ('z', {[1, 2, 3]}, {[1, 2, 3]}, {[1, 2, 3]}, {[1, 2, 4]});
%!error<unknown polygon library> polybool (1, [1 1; 2 2; 3 3], [2 2; 3 3; 4 4], "abc")
|