1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
## Copyright (C) 2016 Amr Mohamed
## Copyright (C) 2017 Piyush Jain
## Copyright (C) 2017-2018 Philip Nienhuis
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} [@var{xo}, @var{yo}] = polyjoin (@var{xi}, @var{yi})
## @deftypefnx {} {@var{xyo} =} polyjoin (@var{xi})
## Convert cell arrays of multipart polygon coordinates to numeric
## vectors with polygon parts separated by NaNs.
##
## @var{xi} and @var{yi} are cell vectors where each cell contains a
## numeric vector of X and Y coordinates, resp. Alternatively, @var{xi}
## can be a cell array wih each cell containing Nx2 or Nx3 matrices
## constituting XY or XYZ coordinates of polygon part vertices and yi
## can be omitted.
##
## @var{xo} and @var{yo} are vectors of X and Y coordinates of polygon
## vertices where polygon parts are separated by NaNs. If @var{xi} and
## @var{yi} either were row vectors or contained row vectors, @var{xo}
## and @var{yo} will be returned as row vectors, otherwise as column
## vectors.
##
## If @var{xi} contained Nx2 or Nx3 matrices, @var{xo} will be a Nx2
## or Nx3 matrix where polygon parts are separetd by NaN rows. @var{yo}
## will be empty.
##
## polyjoin ultimately calls function joinPolygons in the Geometry package.
##
## @end deftypefn
## Author: Philip Nienhuis <prnienhuis@users.sf.net>
## Created: 2017-11-19
function [xo, yo] = polyjoin (xi, yi)
## Input checks
if (nargin < 1)
print_usage ();
elseif (! iscell (xi))
error ("Octave:invalid-input-arg", ...
"polyjoin: input cell array or vectors expected");
elseif (nargin == 1 && (! iscell (xi) ||
(isnumeric (xi{1}) && size (xi{1}, 2) < 2)))
error ("Octave:invalid-input-arg", ...
"polyjoin: Nx2 or Nx3 matrix expected for arg. #1");
elseif (nargin > 1 && ! iscell (yi))
error ("Octave:invalid-input-arg", ...
"polyjoin: expected 2 cell arrays of coordinate vectors");
elseif (nargin > 1 && nargout < 2)
warning ("Octave:invalid-input-arg", ...
["polyjoin: nr. of input arguments doesn't match nr. of output" ...
" arguments"]);
endif
## Remember input vector orientation; does not apply to input matrices
ir = 0;
if (isvector (xi{1}))
if (nargin == 1)
yi = {};
endif
if (isrow (xi{1}))
## Transpose
ir = 1;
xi = cellfun (@transpose, xi, "uni", 0);
yi = cellfun (@transpose, yi, "uni", 0);
endif
if (isrow (xi) && ! isscalar (xi))
ir = 1;
xi = xi';
yi = yi';
endif
yo = joinPolygons (yi);
else
yo = [];
endif
## if (numel (xi) > 1)
xo = joinPolygons (xi);
## else
## xo = cell2mat (xi);
## endif
if (ir)
## Convert back to row vectors
xo = xo';
yo = yo';
endif
endfunction
%!demo
%! x = {[1 2]'; [3 4]'}
%! y = {[10 20]'; [30 40]'}
%! [vecx, vecy] = polyjoin (x, y)
%!test
%! x = {[1 2]'; [3 4]'}; y = {[10 20]'; [30 40]'};
%! [vecx, vecy] = polyjoin (x, y);
%! assert (vecx, [1; 2; NaN; 3; 4]);
%! assert (vecy, [10; 20; NaN; 30; 40]);
%!test
%! x = {[1;2]; [3;4]; [3]}; y = {[10;20]; [30;40]; [10]};
%! [vecx, vecy] = polyjoin (x, y);
%! assert (vecx, [1; 2; NaN; 3; 4; NaN; 3]);
%! assert (vecy, [10; 20; NaN; 30; 40; NaN; 10]);
%!test
%! x = {[1 2 3]'; 4; [5 6 7 8 NaN 9]'};
%! y = {[9 8 7]'; 6; [5 4 3 2 NaN 1]'};
%! [vecx, vecy] = polyjoin (x, y);
%! assert (vecx, [1; 2; 3; NaN; 4; NaN; 5; 6; 7; 8; NaN; 9]);
%! assert (vecy, [9; 8; 7; NaN; 6; NaN; 5; 4; 3; 2; NaN; 1]);
## Test 2D input matrices
%!test
%! xyi = {[0 0; 0 10; 10, 10; 10, 0; 0, 0]; [1 5; 2 5; 2 6; 1 6; 1 5]};
%! xyo = polyjoin (xyi);
%! assert (polyjoin (xyi), [0 0; 0 10; 10 10; 10 0; 0 0; NaN, NaN; 1 5; 2 5; 2 6; 1 6; 1 5], eps);
## Test 3D input matrices
%!test
%! xyi = {[0 0 1; 0 10 2; 10, 10 3; 10, 0 2; 0, 0 1]; [1 5 1.5; 2 5 2; 2 6 2.5; 1 6 2; 1 5 1.5]};
%! xyo = polyjoin (xyi);
%! assert (polyjoin (xyi), [0 0 1; 0 10 2; 10 10 3; 10 0 2; 0 0 1; NaN, NaN NaN; 1 5 1.5; 2 5 2; 2 6 2.5; 1 6 2; 1 5 1.5], eps);
## Corner case of just one point
%!test
%! assert (polyjoin ({[2, 3]}), [2, 3], eps);
%!error <input cell array or vectors expected> polyjoin (1);
%!error <Nx2 or Nx3 matrix expected> polyjoin ({2});
%!error <Nx2 or Nx3 matrix expected> polyjoin ({2, 3});
%!error <expected 2 cell arrays> polyjoin ({1; 2}, [3 4]);
%!warning <nr. of input arguments doesn't match> polyjoin ({1; 2}, {3 4});
|