File: raytrace.m

package info (click to toggle)
octave-iso2mesh 1.9.8%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 11,982; ansic: 10,158; sh: 365; makefile: 59
file content (72 lines) | stat: -rw-r--r-- 2,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [t, u, v, idx] = raytrace(p0, v0, node, face)
%
% [t,u,v,idx]=raytrace(p0,v0,node,face)
%
% perform a Havel-styled ray tracing for a triangular surface
%
% author: Qianqian Fang, <q.fang at neu.edu>
%
% input:
%   p0: starting point coordinate of the ray
%   v0: directional vector of the ray
%   node: a list of node coordinates (nn x 3)
%   face: a surface mesh triangle list (ne x 3)
%
% output:
%   t: signed distance from p to the intersection point for each surface
%      triangle, if ray is parallel to the triangle, t is set to Inf
%   u: bary-centric coordinate 1 of all intersection points
%   v: bary-centric coordinate 2 of all intersection points
%      the final bary-centric triplet is [u,v,1-u-v]
%   idx: optional output, if requested, idx lists the IDs of the face
%      elements that intersects the ray; users can manually calc idx by
%
%      idx=find(u>=0 & v>=0 & u+v<=1.0 & ~isinf(t));
%
% Reference:
%  [1] J. Havel and A. Herout, "Yet faster ray-triangle intersection (using
%          SSE4)," IEEE Trans. on Visualization and Computer Graphics,
%          16(3):434-438 (2010)
%  [2] Q. Fang, "Comment on 'A study on tetrahedron-based inhomogeneous
%          Monte-Carlo optical simulation'," Biomed. Opt. Express, (in
%          press)
%
% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)
%

p0 = p0(:)';
v0 = v0(:)';

AB = node(face(:, 2), 1:3) - node(face(:, 1), 1:3);
AC = node(face(:, 3), 1:3) - node(face(:, 1), 1:3);

N = cross(AB', AC')';
d = -dot(N', node(face(:, 1), 1:3)')';

Rn2 = 1 ./ sum((N .* N)')';

N1 = cross(AC', N')' .* repmat(Rn2, 1, 3);
d1 = -dot(N1', node(face(:, 1), 1:3)')';

N2 = cross(N', AB')' .* repmat(Rn2, 1, 3);
d2 = -dot(N2', node(face(:, 1), 1:3)')';

den = (v0 * N')';
t = -(d + (p0 * N')');
P = (p0' * den' + v0' * t')';
u = dot(P', N1')' + den .* d1;
v = dot(P', N2')' + den .* d2;

idx = find(den);
den(idx) = 1 ./ den(idx);

t = t .* den;
u = u .* den;
v = v .* den;

% if den==0, ray is parallel to triangle, set t to infinity
t(find(den == 0)) = Inf;

if (nargout >= 4)
    idx = find(u >= 0 & v >= 0 & u + v <= 1.0 & ~isinf(t));
end