1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
function varargout = s2v(node, face, div, varargin)
%
% [img,v2smap]=s2v(node,face,div)
%
% shortcut for surf2vol, coverting a surface to a volumetric image
%
% author: Qianqian Fang (q.fang at neu.edu)
%
% input:
% node: node list of the triangular surface, 3 columns for x/y/z
% face: triangle node indices, each row is a triangle
% div: division number along the shortest edge of the mesh (resolution)
% if not given, div=50
%
% output:
% img: a volumetric binary image at position of ndgrid(xi,yi,zi)
% v2smap (optional): a 4x4 matrix denoting the Affine transformation to map
% the voxel coordinates back to the mesh space. One can use the
% v2smap to convert a mesh generated from the rasterized volume
% into the original input mesh space (work coordinate system). For example:
%
% [img,map]=s2v(node,face);
% [no,el]=v2s(img,0.5,5);
% newno=map*[no ones(length(no),1)]';
% newno=newno(1:3,:)'; % newno and el now go back to the world coordinates
%
% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)
%
p0 = min(node);
p1 = max(node);
if (size(node, 1) == 0 || size(face, 1) == 0)
error('node and face can not be empty');
end
if (nargin < 3)
div = 50;
end
if (div == 0)
error('div can not be 0');
end
dx = min(p1 - p0) / div;
if (dx <= eps)
error('the input mesh is in a plane');
end
[varargout{1:2}] = surf2vol(node, face, p0(1) - dx:dx:p1(1) + dx, p0(2) - dx:dx:p1(2) + dx, p0(3) - dx:dx:p1(3) + dx, varargin{:});
|