1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
function savemsh(node, elem, fname, rname)
%
% savemsh(node,elem,fname,rname)
%
% save a tetrahedral mesh to GMSH mesh format
%
% author: Riccardo Scorretti (riccardo.scorretti<at> univ-lyon1.fr)
% date: 2013/07/22
%
% input:
% node: input, node list, dimension (nn,3)
% elem: input, tetrahedral mesh element list, dimension (ne,4) or (ne,5) for multi-region meshes
% fname: output file name
% rname: name of the regions, cell-array of strings (optional)
%
% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)
%
if nargin < 4
rname = {};
end
if size(elem, 2) < 5
elem(:, 5) = 1;
end
fid = fopen(fname, 'wt');
if (fid == -1)
error('You do not have permission to save mesh files.');
end
% Check that all the elements are correctly oriented
elem(:, 1:4) = meshreorient(node, elem(:, 1:4));
nbNodes = size (node, 1);
reg = unique (elem(:, 5));
reg(reg <= 0) = max(reg) + 1 - reg(reg <= 0); % convert label 0 to max(reg)+1, -1 to max(reg)+2, and so on
nbRegion = length (reg);
nbElements = size (elem, 1);
% Create the skeleton of the mesh structure
M.Info.version = [];
M.Nodes.nb = 0;
M.Nodes.x = [];
M.Nodes.y = [];
M.Nodes.z = [];
M.Elements.nb = 0;
M.Elements.type = zeros (0, 0, 'uint8');
M.Elements.tableOfNodes = zeros (0, 0, 'uint32');
M.Elements.region = zeros (0, 0, 'uint16');
M.Regions.nb = 0;
M.Regions.name = {};
M.Regions.dimension = [];
% Build the table of nodes
M.Nodes.nb = nbNodes;
M.Nodes.x = node(:, 1);
M.Nodes.y = node(:, 2);
M.Nodes.z = node(:, 3);
clear node;
% Build the table of elements
M.Elements.nb = nbElements;
M.Elements.type = uint8(4 * ones(nbElements, 1));
M.Elements.tableOfNodes = uint32(elem(:, 1:4));
M.Elements.region = uint16(elem(:, 5));
clear elem;
% Build the table of regions
M.Regions.nb = max(reg);
for k = 1:nbRegion
if length(rname) < k
rname{k} = sprintf('region_%d', k);
end
M.Regions.name{reg(k)} = sprintf ('%s', rname{k});
M.Regions.dimension(reg(k)) = 3;
end
% Writhe the header
fprintf (fid, '$MeshFormat\n2.2 0 8\n$EndMeshFormat\n');
% Write the physical names
if M.Regions.nb > 0
fprintf (fid, '$PhysicalNames\n');
fprintf (fid, '%d\n', M.Regions.nb);
for r = 1:M.Regions.nb
name = M.Regions.name{r};
if isempty (name)
name = sprintf ('Region_%d', r);
end
fprintf (fid, '%d %d "%s"\n', M.Regions.dimension(r), r, name);
end
fprintf (fid, '$EndPhysicalNames\n');
end
% Write the nodes
fprintf (fid, '$Nodes\n');
fprintf (fid, '%d\n', size(M.Nodes.x, 1));
buffer = [1:M.Nodes.nb; M.Nodes.x'; M.Nodes.y'; M.Nodes.z'];
fprintf (fid, '%d %10.10f %10.10f %10.10f\n', buffer);
fprintf (fid, '$EndNodes\n');
% Write the elements
%
% In order to accelerate the printing, the elements are printed in groups of (blockSize) elements, and
% are grouped by (homogeneous) type. This variable sets the size of each group.
%
blockSize = 100000;
fprintf (fid, '$Elements\n');
fprintf (fid, '%d\n', M.Elements.nb);
for h = 1:blockSize:ceil(length(M.Elements.type) / blockSize) * blockSize
e = h:min(length(M.Elements.type), h + blockSize - 1); % = elements being considered
type = unique (M.Elements.type(e)); % = types of elements found in this group
%
% Process each type of element separately
%
for k = 1:length(type)
if type(k) == 0
continue
end
et = e(find(M.Elements.type(e) == type(k))); % = elements of the group of the same type
%
% Determine the format for printing the elements
%
elementFormat = '%d %d %d %d %d %d\n';
for n = 1:4
elementFormat = [elementFormat '%d '];
end
elementFormat = [elementFormat '\n'];
%
% Collect in a buffer all the data of the elements of index (et)
%
buffer = zeros (10, length(et));
buffer(1, :) = et;
buffer(2, :) = type(k);
buffer(3, :) = 3;
buffer(4, :) = M.Elements.region(et);
buffer(5, :) = M.Elements.region(et);
buffer(6, :) = 0;
for n = 1:4
buffer(6 + n, :) = M.Elements.tableOfNodes(et, n);
end
%
% Print all the homogeneous elements in the group with a single instruction
%
fprintf (fid, elementFormat, buffer);
end
end
fprintf (fid, '$EndElements\n');
fclose(fid);
|