File: so_run_descent.m

package info (click to toggle)
octave-level-set 0.3.1~git.2019.04.13-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 884 kB
  • sloc: cpp: 1,840; makefile: 34; sh: 20
file content (458 lines) | stat: -rw-r--r-- 16,857 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
##  Copyright (C) 2013-2015  Daniel Kraft <d@domob.eu>
##  GNU Octave level-set package.
##
##  This program is free software: you can redistribute it and/or modify
##  it under the terms of the GNU General Public License as published by
##  the Free Software Foundation, either version 3 of the License, or
##  (at your option) any later version.
##
##  This program is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##  GNU General Public License for more details.
##
##  You should have received a copy of the GNU General Public License
##  along with this program.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{s}, @var{log}] =} so_run_descent (@var{nSteps}, @var{phi0}, @var{data})
##
## Run a descent method for shape optimisation.  This routine is quite
## general, since the actual ``descent direction'' used must be computed
## by a callback (see below).  It is thus not just for steepest descent.
## At each step, a line search according to @code{so_step_armijo} is employed.
##
## @var{nSteps} defines the maximal number of descent steps to take.  After
## this number, the method returns no matter whether or not the stopping
## criterion is fulfilled.  @var{phi0} is the initial geometry to use.
## Returned are the final state and the descent log structs (see below).
##
## @var{data} contains all the information about the actual problem.
## This includes various parameters that influence the behaviour of this
## and other routines.  Furthermore, also some callback functions must
## be defined to evaluate the cost functional and to determine the
## next descent direction.  This struct is also updated with the current
## state at each optimisation step and passed to the callback functions.
##
## Most content of @var{data} is read-only, with @code{@var{data}.s} and
## @code{@var{data}.log} being the only exceptions.  They are updated
## accordingly from the results of the callback functions and the
## optimisation descent.  These two structs will be created and filled in
## by @code{so_run_descent}.  @code{@var{data}.log} is preserved if it is
## already present.  @code{@var{data}.s} will always be overwritten
## with the initial result of the @code{update_state} callback.
##
## The struct @code{@var{data}.p} contains parameters.  They can contain
## problem-dependent parameters that are handled by the callback routines
## as well as parameters for the line search with @code{so_step_armijo}.
## This routine is influenced by the following parameters directly:
##
## @table @code
## @item verbose
## Whether or not log chatter should be printed.
##
## @item descent.initialStep
## Initial trial step length for the line search in the first iteration.
##
## @item descent.projectSpeed
## If set, project the speed field (in L2, discontinuously) to enforce
## geometric constraints (see below).  If not set or missing, the
## geometry is projected instead.
## @end table
##
## The routine @code{so_init_params} can be used to initialise the parameter
## structure with some defaults.
##
## Information about the used grid and grid-dependent data should be in
## @code{@var{data}.g}.  Generally defined are the following fields:
##
## @table @code
## @item h
## The grid spacing.
##
## @item constraints
## Optional, can be used to specify the hold-all domain and contained
## regions as shape constraints.  If specified, the shape or the speed
## field will be ``projected'' (depending on
## @code{@var{data}.p.descent.projectSpeed}) to satisfy the constraints.
## The callback computing the descent direction is also a good place
## to take the constraints into account in a problem-specific way.
##
## The following fields (as logical arrays with the grid size) can
## be used to specify the constraints:
##
## @table @code
## @item holdall
## The hold-all domain.  The current shape must always be part of it.
## By excluding interior parts of the grid, forbidden regions can be defined.
## 
## @item contained
## A part of the hold-all domain that should always be part of the shape.
## @end table
## @end table
##
## The specific problem is handled by @emph{callback routines} to compute
## the cost and find descent directions.  They must be set in
## @code{@var{data}.cb}, with these interfaces:
##
## @table @code
## @item @var{s} = update_state (@var{phi}, @var{data})
## Compute the state (see below) for the geometry described by @var{phi}.
## The main work done by this callback is evaluating the cost functional.
## It does not need to update @code{@var{s}.phi} to @var{phi}, this will
## be done automatically after the call.
##
## @item [@var{f}, @var{dJ}] = get_direction (@var{data})
## Compute the speed field @var{f} and its associated directional
## shape derivative @var{dJ} to be used as the next descent direction.
## The current cost and geometry can be extracted from @code{@var{data}.s}.
##
## @item @var{exit} = check_stop (@var{data})
## Determine whether or not to stop the iteration.  Should return
## @code{true} if the state in @var{data} satisfies the problem-specific
## stopping criterion.  If not present, no stopping criterion
## is used and the iteration done for precisely @var{nSteps} iterations.
##
## @item @var{d} = solve_stationary (@var{f}, @var{data})
## Solve the stationary Eikonal equation for the speed field.
## If not present, @code{ls_solve_stationary} is used.  It can be
## set explicitly to give a more appropriate routine.  For instance,
## @code{ls_nb_from_geom} could be used if geometry information is computed.
## @end table
##
## Additional callback functions can be defined optionally
## in @code{@var{data}.handler}.  They can keep problem-specific
## logs of the descent, plot figures, print output or something else.
## They should always return a (possibly) updated log struct, which
## will be updated in @code{@var{data}.log} after the call.
## This struct can also be used to persist information between
## calls to the handlers.  These handlers can be defined:
##
## @table @code
## @item @var{log} = initialised (@var{data})
## Called before the iteration is started.  @code{@var{data}.s}
## contains the initial geometry and computed state data for it.
##
## @item @var{log} = before_step (@var{k}, @var{data})
## Called when starting a new step, before any action for the
## step is taken.  @var{k} is the number of the iteration and
## @code{@var{data}.s} contains the current state.
##
## @item @var{log} = direction (@var{k}, @var{f}, @var{dJ}, @var{data})
## Called when the descent direction has been determined.
## @var{f} and @var{dJ} are the results of @code{@var{data}.cb.get_direction}.
##
## @item @var{log} = after_step (@var{k}, @var{t}, @var{s}, @var{data})
## Called after a step has been found.  @var{t} is the step length
## found by the line search.  @var{s} is the state struct after the step
## has been taken.  The previous state can still be found in
## @code{@var{data}.s}.
##
## @item @var{log} = finished (@var{data})
## Called after the descent run.  @code{@var{data}.log} is already filled
## in with the standard data (number of steps and costs at each step).
## @end table
##
## Note that information about the speed field @var{f} is only
## passed to the @code{direction} handler and @emph{not again}
## to @code{after_step}.  If it is required by the latter,
## it should be saved somehow in the log struct.  This way, the handlers
## really only receive new information and no redundant arguments.
##
## Finally, we come to the state struct @code{@var{data}.s}.  It must
## contain at least the fields below, but can also contain problem-specific
## information that is, for instance, computed in the @code{update_state}
## handler and reused for computing the descent direction.
##
## @table @code
## @item phi
## The level-set function of the current geometry.  This is automatically
## updated after the @code{update_state} handler has been called.
##
## @item cost
## Value of the cost functional for the geometry in @code{@var{data}.s.phi}.
## @end table
##
## The log struct can contain mostly user-defined data, but
## @code{so_run_descent} will also fill in some data by itself:
##
## @table @code
## @item s0
## The state struct corresponding to the initial geometry defined
## by @var{phi0}.
##
## @item steps
## Total number of steps done.  This is useful if the stopping criterion
## was satisfied before @var{nSteps} iterations.
##
## @item costs
## Cost values for all steps.  This will be a vector of length
## @code{@var{data}.log.steps + 1}, since it contains both the initial
## and the final cost value in addition to all intermediate ones.
## @end table
##
## @seealso{so_init_params, so_save_descent, so_replay_descent,
## so_explore_descent, so_step_armijo}
## @end deftypefn

function [s, descentLog] = so_run_descent (nSteps, phi0, data)
  if (nargin () != 3)
    print_usage ();
  endif

  if (!isscalar (nSteps) || nSteps != round (nSteps) || nSteps < 1)
    print_usage ();
  endif

  if (data.p.descent.initialStep <= 0)
    error ("invalid initial step length");
  endif

  % Construct empty structs for optional fields.  This simplifies the
  % process later on.
  if (!isfield (data.g, "constraints"))
    data.g.constraints = struct ();
  endif
  if (!isfield (data, "handler"))
    data.handler = struct ();
  endif

  % Augment the update_state and get_direction callbacks.
  data._descent = struct ();
  data._descent.userUpdateState = data.cb.update_state;
  data._descent.userGetDirection = data.cb.get_direction;
  data.cb.update_state = @augmentedUpdateState;
  data.cb.get_direction = @augmentedGetDirection;

  % Create 'null' check_stop callback if none is present.
  if (!isfield (data.cb, "check_stop"))
    data.cb.check_stop = @() false;
  endif

  % Create default 'solve_stationary' callback.
  if (!isfield (data.cb, "solve_stationary"))
    data.cb.solve_stationary ...
      = @(f, data) ls_solve_stationary (data.s.phi, f, data.g.h);
  endif

  % Do some initialisations, but only if we're not in "continuation" mode.
  % In continuation mode, the "initialised" handler is already called
  % and the data to use is explicitly given by the caller.
  if (!isfield (data, "_descentContinuation"))
    data.s = data.cb.update_state (phi0, data);
    data.s.phi = phi0;
    if (!isfield (data, "log"))
      data.log = struct ();
    endif

    lastStep = data.p.descent.initialStep;
    costs = [data.s.cost];
    k = 0;

    data.log.s0 = data.s;
    if (isfield (data.handler, "initialised"))
      data.log = data.handler.initialised (data);
    endif
  else
    lastStep = data._descentContinuation.step;
    costs = data._descentContinuation.costs;
    k = data._descentContinuation.k;
  endif

  % Do the descent iteration.
  while (k < nSteps && !data.cb.check_stop (data.s))
    ++k;
    if (data.p.verbose)
      printf ("\nDescent iteration %d...\n", k);
      printf ("Starting cost: %.6f\n", data.s.cost);
      ticId = tic ();
    endif

    % Call "before_step" handler if present.
    if (isfield (data.handler, "before_step"))
      data.log = data.handler.before_step (k, data);
    endif

    % Check the constraints.  Since we enforce them, they
    % should always be satisfied.
    if (isfield (data.g.constraints, "holdall"))
      assert (ls_check (data.s.phi, "inside", data.g.constraints.holdall));
    endif
    if (isfield (data.g.constraints, "contained"))
      assert (ls_check (data.s.phi, "contain", data.g.constraints.contained));
    endif

    % Get the descent direction.
    [f, dJ] = data.cb.get_direction (data);
    if (dJ >= 0)
      error ("no descent direction found");
    endif

    % Print log and call "direction" handler if present.
    if (data.p.verbose)
      printf ("Directional derivative: %.6f\n", dJ);
    endif
    if (isfield (data.handler, "direction"))
      data.log = data.handler.direction (k, f, dJ, data);
    endif

    % Calculate level-set stationary distances and perform Armijo step.
    dists = data.cb.solve_stationary (f, data);
    [newS, lastStep] = so_step_armijo (lastStep, dists, f, dJ, data);

    % Call "after_step" handler.
    if (isfield (data.handler, "after_step"))
      data.log = data.handler.after_step (k, lastStep, newS, data);
    endif

    % Update cost tracking and switch over to new state.
    costs(k + 1) = newS.cost;
    data.s = newS;

    % Finish timing for verbose output.
    if (data.p.verbose)
      toc (ticId);
    endif
  endwhile

  % Fill in the final results.
  data.log.steps = k;
  assert (length (costs) == k + 1);
  data.log.costs = costs;

  % Call "finished" handler as the very last action.
  if (isfield (data.handler, "finished"))
    data.log = data.handler.finished (data);
  endif

  % Fill return values.
  s = data.s;
  descentLog = data.log;
endfunction

% Function that augments the 'update_state' handler with general stuff
% that it should do.  In particular, we enforce the constraints
% before doing anything (so that they are definitely not violated
% before calling the user code).  Also, update data.s.phi after the call.
function s = augmentedUpdateState (phi, data)
  phi = ls_normalise (phi, data.g.h);
  if (isfield (data.g.constraints, "holdall"))
    phi = ls_enforce (phi, "inside", data.g.constraints.holdall);
  endif
  if (isfield (data.g.constraints, "contained"))
    phi = ls_enforce (phi, "contain", data.g.constraints.contained);
  endif

  s = data._descent.userUpdateState (phi, data);
  s.phi = phi;
endfunction

% Function that augments the 'get_direction' handler.  It hooks the
% speed field projection onto it when requested by the parameters.
function [F, DJ] = augmentedGetDirection (data)
  [F, DJ] = data._descent.userGetDirection (data);

  % Note that the projection below does not take care of adapting DJ
  % accordingly!  Using this feature makes the descent method potentially
  % "inconsistent".  The same is true if the geometry is projected
  % after a step, though.

  if (isfield (data.p.descent, "projectSpeed") && data.p.descent.projectSpeed)
    if (isfield (data.g.constraints, "holdall"))
      F = ls_enforce_speed (F, "inside", data.g.constraints.holdall);
    endif
    if (isfield (data.g.constraints, "contained"))
      F = ls_enforce_speed (F, "contain", data.g.constraints.contained);
    endif
  endif
endfunction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tests.

% Construct basic example problem for testing.
%!shared data, phi0
%!  data = struct ();
%!  data.p = so_init_params (false);
%!  data.p.vol = 10;
%!  data.p.weight = 50;
%!
%!  n = 100;
%!  x = linspace (-10, 10, n);
%!  h = x(2) - x(1);
%!  data.g = struct ("x", x, "h", h);
%!
%!  data = so_example_problem (data);
%!  data.handler = struct ();
%!
%!  phi0 = ls_genbasic (data.g.x, "box", -3, 5);

% Test for errors.
%!error <Invalid call to>
%!  so_run_descent (1, 2);
%!error <Invalid call to>
%!  so_run_descent (1, 2, 3, 4);
%!error <Invalid call to>
%!  so_run_descent (0, phi0, data);
%!error <Invalid call to>
%!  so_run_descent (1.5, phi0, data);
%!error <Invalid call to>
%!  so_run_descent ([2, 3], phi0, data);

% Validate parameters.
%!error <invalid initial step length>
%!  d = data;
%!  d.p.descent.initialStep = 0;
%!  so_run_descent (1, phi0, d);

% Test optimisation of the example problem.
%!test
%!  nSteps = 12;
%!
%!  [s, descentLog] = so_run_descent (nSteps, phi0, data);
%!  assert (s.cost, 0, 1e-3);
%!  assert (length (descentLog.costs), nSteps + 1);
%!  assert (descentLog.costs(end), s.cost);
%!  %semilogy (descentLog.costs, "o");

% Test stopping criterion.
%!test
%!  tol = 5e-2;
%!  nSteps = 100;
%!  d = data;
%!  d.cb.check_stop = @(data) (data.cost < tol);
%!
%!  [s, descentLog] = so_run_descent (nSteps, phi0, d);
%!  assert (s.cost < tol);
%!  printf ("Steps needed: %d\n", descentLog.steps);
%!  assert (descentLog.steps < nSteps);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Demo.

% Use so_example_problem to define a demo.
%
%!demo
%!  data = struct ();
%!  data.p = so_init_params (true);
%!  data.p.vol = 10;
%!  data.p.weight = 50;
%!
%!  n = 100;
%!  x = linspace (-10, 10, n);
%!  h = x(2) - x(1);
%!  data.g = struct ("x", x, "h", h);
%!
%!  % Look at so_example_problem to see how the callbacks
%!  % and the plotting handler is defined.
%!  data = so_example_problem (data);
%!
%!  phi0 = ls_genbasic (data.g.x, "box", -3, 7);
%!  [s, descentLog] = so_run_descent (5, phi0, data);
%!
%!  figure ();
%!  semilogy (0 : descentLog.steps, descentLog.costs, "o");
%!  title ("Cost Descrease");
%!
%!  printf ("\nFinal interval: [%.6d, %.6d]\n", s.a, s.b);
%!  printf ("Final cost: %.6d\n", s.cost);