File: ref_dctiii_1.m

package info (click to toggle)
octave-ltfat 2.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,256 kB
  • ctags: 3,340
  • sloc: ansic: 13,629; cpp: 6,764; java: 1,499; objc: 345; makefile: 177; python: 103; sh: 18
file content (56 lines) | stat: -rw-r--r-- 1,612 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function c=ref_dctiii_1(f)
%-*- texinfo -*-
%@deftypefn {Function} ref_dctiii_1
%@verbatim
%REF_DCTII  Reference Discrete Consine Transform type III
%   Usage:  c=ref_dctiii(f);
%
%   The transform is computed by an FFT of 4 times the length of f.
%   See the Wikipedia article on "Discrete Cosine Transform"
%
%   This is the inverse of REF_DCTII
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_dctiii_1.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

L=size(f,1);
W=size(f,2);

if ~isreal(f)
  c=ref_dctiii_1(real(f))+i*ref_dctiii_1(imag(f));
else
  % Scale coefficients to obtain orthonormal transform.
  f(1,:)=sqrt(2)*f(1,:);
  f=f*sqrt(2*L);
  
  % Make 4x long vector
  lf=[f;...
      zeros(1,W);...
      -flipud(f);...
      -f(2:end,:);...
      zeros(1,W);...
      flipud(f(2:end,:))];
  

  fflong=real(ifft(lf));

  c=fflong(2:2:2*L,:);
end