1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
function gd=ref_gabdualns_2(g,V);
%-*- texinfo -*-
%@deftypefn {Function} ref_gabdualns_2
%@verbatim
%REF_GABDUALNS_2 GABDUALNS by A.v.Leest's Zak-transform method.
% Usage: g=ref_gabdualns_2(gamma,V);
%
% This function calculates the dual window g of the given window
% w for the Gabor expansion on a lattice that is described by the
% parameters A, p, q, J, and L. Furthermore, the l_2 norm of the
% difference of the (normalized) dual window and the (normalized)
% window is calculated.
%
% The method is based on the Zak transform.
%
% Marc Geilen, 1995. (rectangular lattice)
% Arno J. van Leest, 1998. (non-separable lattice)
% Peter L. Soendergaard, 2006 (change of variable names)
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_gabdualns_2.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% This documents Arno's variable names
%
% D the determinant of the matrix A and the number of time shifts
% in each time segment (segment between two points on the
% time-axis)
% K=pJ the number of samples in the freq. domain after each time shift.
% N=qJ the size of the time shift.
% DN length of a time segment.
% p/q the oversampling.
% M=pLD the number of time shifts.
% pL the number of points on the time-axis.
% MN length of the signal.
% MK the number of lattice points (MK/MN=K/N=p/q is the oversampling).
%
% (note that MN must be equal to the length of the window w).
%
% V is on Peters normal form.
a=V(1,1);
b=V(2,2);
Lpeter=size(g,1);
Mpeter=Lpeter/b;
Npeter=Lpeter/a;
c=gcd(a,Mpeter);
d=gcd(b,Npeter);
ppeter=a/c;
qpeter=Mpeter/c;
% Conversion, part 1 --------------------------
qarno=ppeter;
parno=qpeter;
J=c;
% ---------------------------------------------
% Convert to Arnos normal form
gcd1=gcd(V(1,1),V(1,2));
gcd2=gcd(V(2,1),V(2,2));
A=zeros(2);
A(1,:)=V(1,:)/gcd1;
A(2,:)=V(2,:)/gcd2;
[gg,h0,h1] = gcd(A(1,1),A(1,2));
D = det(A);
% Stupid, but needed in Octave
D=round(D);
% ---------- more conversion -------------
Larno=d/D;
% ---------------------------------------
x = A(2,:)*[h0;h1];
x = mod(x,D);
A = [1 0;x D];
%function [g,nrm]=calcg(A,p,q,J,L,w);
% Bereken de nodige variabelen.
%A = eqform(A);
swap = 0;
%D=det(A);
Marno=parno*Larno*D;
Narno=qarno*J;
K=parno*J;
r=-A(2,1);
h=gcd(D,qarno);
f=D/h;
% Conversion, part 2 -----------
Narno=a;
K=Mpeter;
Marno=Npeter;
% ------------------------------
clear p
clear q
clear M
clear N
clear L
clear a
clear b
clear c
clear d
g=reshape(g,Narno,Marno);
wz = fft(g,[],2);
% gz zal de zakgetransformeerde van g bevatten
gz=zeros(Narno,Marno);
mgz=zeros(f*Narno,Marno);
mwz=zeros(f*Narno,Marno);
% The circshifts work along the rows!
O = (0:Marno-1);
O = O(ones([1 J]),:);
for n=0:qarno-1,
i=rem(n*parno,qarno);
k=fix(n*parno/qarno);
for l=0:f-1,
mwz((n+l*qarno)*J+1:(n+l*qarno)*J+J,:)= ...
circshift(wz(i*J+1:i*J+J,:).*exp(j*2*pi*(k+parno*l)/Marno*O),...
[0 (n+l*qarno)*r*parno*Larno]);
end;
end
for n=0:J-1,
for l=0:Larno*h-1,
mgz(n+1:J:f*Narno,l+1:Larno*h:Marno)=...
f*parno/K*(pinv(mwz(n+1:J:f*Narno,l+1:Larno*h:Marno)))';
end;
end;
% Voer nu de omgekeerde bewerkingen uit van de verschuivingen en phase
% correcties om gz te verkrijgen uit mgz
for n=0:qarno-1,
i=rem(n*parno,qarno);
k=fix(n*parno/qarno);
gz(i*J+1:i*J+J,:)=circshift(mgz(n*J+1:n*J+J,:),[0 -n*r*parno*Larno]) ...
.*exp(-j*2*pi*k/Marno*O);
end
% Bereken de functie g uit gz
gd = ifft(gz(1:Narno,:),[],2);
gd = gd(:);
if swap
gd=parno/qarno*gd;
end;
|