File: ref_gabmulappr.m

package info (click to toggle)
octave-ltfat 2.2.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,256 kB
  • ctags: 3,340
  • sloc: ansic: 13,629; cpp: 6,764; java: 1,499; objc: 345; makefile: 177; python: 103; sh: 18
file content (147 lines) | stat: -rw-r--r-- 4,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function sym=ref_gabmulappr(T,p2,p3,p4,p5);
%-*- texinfo -*-
%@deftypefn {Function} ref_gabmulappr
%@verbatim
%GABMULMAT  Best Approximation by a Gabor multiplier.
%   Usage:  sym=gabmulappr(T,a,M);
%           sym=gabmulappr(T,g,a,M);
%           sym=gabmulappr(T,ga,gs,a,M);
%
%   Input parameters:
%         T     : matrix to be approximated
%         g     : analysis/synthesis window
%         ga    : analysis window
%         gs    : synthesis window
%         a     : Length of time shift.
%         M     : Number of channels.
%
%   Output parameters:
%         sym   : symbol
%
%   GABMULAPPR(T,g,a,M) will calculate the best approximation of the given
%   matrix T in the frobenius norm by a Gabor multiplier determined by the
%   symbol sym over the rectangular time-frequency lattice determined by a
%   and M.  The window g will be used for both analysis and synthesis.
%   IMPORTANT: The chosen Gabor system has to be a frame sequence!
%
%   GABMULAPPR(T,a,M) will do the same using an optimally concentrated,
%   tight Gaussian as window function.
%
%   GABMULAPPR(T,gs,ga,a) will do the same using the window ga for analysis
%   and gs for synthesis.
%
%   SEE ALSO: GABMUL, GABMULINV
% 
%   In this algorithm first the 'lower symbol' is calcualted, then the
%   so-called 'upper symbol'.
% 
%   The lower symbol is the inner product < T , P_lambda > where P_lambda 
%   are the projections gamma_lambda otimes g_lambda . These operators
%   form a Bessel sequence and the lower symbol, the lower symbol is the 
%   analysis sequence of T using this Bessel sequence.
%
%   The upper symbol is the inner product < T , Q_lambda > where 
%   Q_lambda are the dual projections operator. Therefore the upper 
%   symbol is the analysis with the dual sequence (if the P have formed a 
%   frame). Because the 
%
%   References :
%    P. Balazs, Basic Definition and Properties of Bessel Multipliers, 
%     Journal of Mathematical Analysis and Applications 325(1):571--585, 
%     January 2007.
%    P.~Balazs, Hilbert-Schmidt operators and frames - classification, best
%     approximation by multipliers and algorithms,  International Journal 
%     of Wavelets, Multiresolution and Information Processing, accepted, 
%     to appear.
%    H. G. Feichtinger, M. Hampjes, G. Kracher, "Approximation of matrices 
%     by Gabor multipliers" , IEEE Signal Procesing Letters Vol. 11, 
%     Issue 11, pp 883-- 886 (2004)
%
%   Author: P. Balazs (XXL)
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_gabmulappr.html}
%@end deftypefn

% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

error(nargchk(3,5,nargin));

L=size(T,1);

if size(T,2)~=L
  error('T must be square.');
end;

if nargin==3
  % Usage: sym=gabmulappr(T,a,M);
  a=p2;
  M=p3;
  ga=gabtight(a,M,L);
  gs=ga;
end;

if nargin==4
  % Usage: sym=gabmulappr(T,g,a,M);
  ga=p2;
  gs=p2;
  a=p3;
  M=p4;
end;
  
if nargin==5
  % Usage: sym=gabmulappr(T,ga,gm,a,M);
  ga=p2;
  gs=p3;
  a=p4;
  M=p5;
end;

N=L/a;
b=L/M;


%       gg = GBa(:,ii+jj*M);  % Element of analysis frame
%       hh = GBs(:,ii+jj*M);  % Element of synthesis frame
%       HS inner product : < T , g \tensor h> = < T h , g > =
part1=reshape(dgt(T',ga,a,M),M*N,L);
part2=reshape(dgt(part1',gs,a,M),M*N,M*N).';
lowsym = reshape(diag(part2),M,N);

GBa = frsynmatrix(frame('dgt',ga,a,M),length(ga));
% Gabor frame synthesis matrix
if ga ~= gs
   GBs = frsynmatrix(frame('dgt',gs,a,M),length(gs));
else
  GBs = GBa;
end

if ga == gs
  % HS Gram matrix
  Gram = abs(GBa'*GBa).^2;
else
  Gram = (GBs'*GBs) .* conj(GBa'*GBa); 
end

% The Gram matrix is square and Toeplitz.
%iGram=inv(Gram);
sym = reshape(Gram\lowsym(:),M,N);
% sym = involute(sym); % strange but true ?