1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
function sym=ref_gabmulappr_1(T,p2,p3,p4,p5);
%-*- texinfo -*-
%@deftypefn {Function} ref_gabmulappr_1
%@verbatim
%GABMULAPPR_1 Best Approximation by a Gabor multiplier.
% Usage: sym=gabmulappr(T,a,M);
% sym=gabmulappr(T,g,a,M);
% sym=gabmulappr(T,ga,gs,a,M);
%
% Input parameters:
% T : matrix to be approximated
% g : analysis/synthesis window
% ga : analysis window
% gs : synthesis window
% a : Length of time shift.
% M : Number of channels.
%
% Output parameters:
% sym : symbol
%
% GABMULAPPR(T,g,a,M) will calculate the best approximation of the given
% matrix T in the frobenius norm by a Gabor multiplier determined by the
% symbol sym over the rectangular time-frequency lattice determined by a
% and M. The window g will be used for both analysis and synthesis.
% IMPORTANT: The chosen Gabor system has to be a frame sequence!
%
% GABMULAPPR(T,a,M) will do the same using an optimally concentrated,
% tight Gaussian as window function.
%
% GABMULAPPR(T,gs,ga,a) will do the same using the window ga for analysis
% and gs for synthesis.
%
%
%
% References:
% P. Balazs. Hilbert-Schmidt operators and frames - classification, best
% approximation by multipliers and algorithms. International Journal of
% Wavelets, Multiresolution and Information Processing, 6:315 -- 330,
% 2008.
%
% P. Balazs. Basic definition and properties of Bessel multipliers.
% Journal of Mathematical Analysis and Applications, 325(1):571--585,
% January 2007.
%
% H. G. Feichtinger, M. Hampejs, and G. Kracher. Approximation of
% matrices by Gabor multipliers. IEEE Signal Procesing Letters,
% 11(11):883--886, 2004.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_gabmulappr_1.html}
%@seealso{gabmul, demo_gabmulappr}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: P. Balazs (XXL)
% ---------- Verify the input -----------------
error(nargchk(3,5,nargin));
L=size(T,1);
if size(T,2)~=L
error('T must be square.');
end;
if nargin==3
% Usage: sym=gabmulappr(T,a,M);
a=p2;
M=p3;
ga=gabtight(a,M,L);
gs=ga;
end;
if nargin==4
% Usage: sym=gabmulappr(T,g,a,M);
ga=p2;
gs=p2;
a=p3;
M=p4;
end;
if nargin==5
% Usage: sym=gabmulappr(T,ga,gm,a,M);
ga=p2;
gs=p3;
a=p4;
M=p5;
end;
N=L/a;
b=L/M;
if size(ga,2)>1
if size(ga,1)>1
error('Input g/ga must be a vector');
else
% ga was a row vector.
ga=ga(:);
end;
end;
if size(gs,2)>1
if size(gs,1)>1
error('Input g/gs must be a vector');
else
% gs was a row vector.
gs=gs(:);
end;
end;
% -------- Algorithm starts here --------------------------
% Calculate the lower symbol. This is basically linear algebra
part1=reshape(dgt(T',ga,a,M),M*N,L);
part2=reshape(dgt(part1',gs,a,M),M*N,M*N).';
lowsym = reshape(diag(part2),M,N);
% Change from lower symbol to upper symbol. This is a quick calculation
% of a 2D convolution.
Gramfirst = conj(dgt(ga,ga,a,M)).*dgt(gs,gs,a,M);
Gramfirst = fft2(Gramfirst);
lowsym = fft2(lowsym);
lowsym = lowsym./Gramfirst;
sym = ifft2(lowsym);
|