1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
function f=ref_idwilt(c,g,a,M)
%-*- texinfo -*-
%@deftypefn {Function} ref_idwilt
%@verbatim
%REF_DWILT Reference Inverse Discrete Wilson Transform
% Usage: f=ref_idwilt(c,g,a,M);
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_idwilt.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Setup transformation matrix.
L=size(g,1);
W=size(c,2);
N=L/a;
F=zeros(L,M*N);
% Weight coefficients.
l=(0:L-1).';
pif=0;
if 1
% This version uses sines and cosines to express the basis functions.
for n=0:N/2-1
% Do the unmodulated coefficient.
F(:,2*M*n+1)=circshift(g,2*a*n);
% Setting this to -n*a should produce a time-invariant transform.
timeinv=0; %-n*a;
% m odd case
for m=1:2:M-1
F(:,m+2*M*n+1) = sqrt(2)*sin(pi*m/M*(l+timeinv)+pif).*circshift(g,2*n*a);
F(:,m+2*M*n+M+1) = sqrt(2)*cos(pi*m/M*(l+timeinv)+pif).*circshift(g,(2*n+1)*a);
end;
% m even case
for m=2:2:M-1
F(:,m+2*M*n+1) = sqrt(2)*cos(pi*m/M*(l+timeinv)+pif).*circshift(g,2*n*a);
F(:,m+2*M*n+M+1) = sqrt(2)*sin(pi*m/M*(l+timeinv)+pif).*circshift(g,(2*n+1)*a);
end;
% Most modulated coefficient, Nyquest frequency.
if mod(M,2)==0
F(:,M+2*M*n+1)=(-1).^(l+timeinv).*circshift(g,2*n*a);
else
F(:,M+2*M*n+1)=(-1).^(l+timeinv).*circshift(g,(2*n+1)*a);
end;
end;
else
% This version uses a cosine,
for n=0:N/2-1
% Do the unmodulated coefficient.
F(:,2*M*n+1)=circshift(g,2*a*n);
timeinv=-n*a;
% m odd case
for m=1:2:M-1
F(:,m+2*M*n+1) = sqrt(2)*cos(pi*m/M*(l+timeinv-M/2)+pif).*circshift(g,2*n*a);
F(:,m+2*M*n+M+1) = sqrt(2)*sin(pi*m/M*(l+timeinv-M/2-a)+pif).*circshift(g,(2*n+1)*a);
end;
% m even case
for m=2:2:M-1
F(:,m+2*M*n+1) = sqrt(2)*cos(pi*m/M*(l+timeinv-M/2)+pif).*circshift(g,2*n*a);
F(:,m+2*M*n+M+1) = sqrt(2)*sin(pi*m/M*(l+timeinv-M/2-a)+pif).*circshift(g,(2*n+1)*a);
end;
% Most modulated coefficient, Nyquest frequency.
if mod(M,2)==0
F(:,M+2*M*n+1)=(-1).^(l+timeinv).*circshift(g,2*n*a);
else
F(:,M+2*M*n+1)=(-1).^(l+timeinv-a).*circshift(g,(2*n+1)*a);
end;
end;
end;
f=F*c;
|