1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
function [g]=ref_iwfac(gf,L,a,M)
%-*- texinfo -*-
%@deftypefn {Function} ref_iwfac
%@verbatim
%REF_IWFAC Compute inverse window factorization
% Usage: g=ref_iwfac(gf,L,a,M);
%
% Input parameters:
% gf : Factored Window
% L : Length of transform.
% a : Length of time shift.
% M : Number of frequency bands.
% Output parameters:
% g : Window function.
%
%@end verbatim
%@strong{Url}: @url{http://ltfat.github.io/doc/reference/ref_iwfac.html}
%@end deftypefn
% Copyright (C) 2005-2016 Peter L. Soendergaard <peter@sonderport.dk>.
% This file is part of LTFAT version 2.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% Calculate the parameters that was not specified
R=prod(size(gf))/L;
N=L/a;
b=L/M;
% The four factorization parameters.
c=gcd(a,M);
p=a/c;
q=M/c;
d=N/q;
gf=reshape(gf,p,q*R,c,d);
% Scale by the sqrt(M) comming from Walnuts representation
gf=gf/sqrt(M);
% fft them
if d>1
gf=ifft(gf,[],4);
end;
g=zeros(L,R);
% Set up the small matrices
for w=0:R-1
for s=0:d-1
for l=0:q-1
for k=0:p-1
g((1:c)+mod(k*M-l*a+s*p*M,L),w+1)=gf(k+1,l+1+q*w,:,s+1);
end;
end;
end;
end;
|